Analyzing power in quasi-elastic proton-proton scattering at the beam energies of 200-650 **MeV/nucleon**

Volkov Ivan Sergeevich

DSS Collaboration, LHEP JINR

Motivation

- 1. Obtaining new data for proton-proton scattering to improve nucleon-nucleon interaction models;
- 2. Checking the possibility of using quasi-elastic proton-proton scattering to obtain vector polarization values of the polarized deuteron beam at energies up to 1 GeV/n.

Scheme of the experiment at NUCLOTRON

Beam polarization

Were used 3 modes of the ion source:

Vector polarization values

		(P_{z}, P_{zz})
From 2 to 6	"+"	(1/3, +1)
From 3 to 5	"_"	(1/3, -1)
Unpolarized	"0"	(0, 0)

P _{Z+}	ΔP_{Z^+}	P _{z-}	ΔP_{z}
0,231	0,008	0,245	0,006

DSS Setup

Polarizen deuteron beam

The dependence of the events yield on the position of the target inside the ion tube

ADC correlation of the counters pair

The time of flight difference

The process of setting up cuts for the CH2-C subtraction procedure

Methods of the subtraction coefficient calculations

The integral method

The spectra fitting method

The least squares method

$$n = \frac{\sum_{i} N_{i}^{(CH2)}}{\sum_{i} N_{i}^{(C)}}$$

$$f(x) = ae^{\frac{(x-b)^2}{2c^2}}$$

$$f(k) = \sum_{i} (N_{CH2} - kN_C)^2$$

The analyzing powers definition formulas

$$A_{yL} = \frac{\frac{N^+ M^0}{N^0 M^+} + \frac{N^- M^0}{N^0 M^-} - 2}{2(P_z^+ + P_z^-)}$$

$$A_{yR} = -A_{yL}$$

The vector analyzing power at the beam energy of 200 MeV/nucleon

The vector analyzing power at the beam energy of 500 MeV/nucleon

The vector analyzing power at the beam energy of 550 MeV/nucleon

The vector analyzing power at the beam energy of 650 MeV/nucleon

The beam polarization values at the beam energies of 500 and 650 MeV/n

- Δ polarization values for dp elastic scattering (270 MeV/n)
- polarization values for pp quasi-elastic scattering (500 MeV/n)
- polarization values for pp quasi-elastic scattering (650 MeV/n)

Conclusion

- The vector analyzing power values of the pp-quasielastic scattering reaction were obtained at the deuteron beam energies of 200, 500, 550 and 650 MeV/n;
- The analyzing power values are in good agreement with the results of other researches;
- The vector polarization values of the deuteron beam were obtained at the beam energies of 500 and 650 MeV/n;
- The vector polarization values are in good agreement with the polarization values that were obtained using dp-elastic scattering at the beam energy of 270 MeV.

Thank you for your attention!