

Yury Malyshkin

(Joint Institute for Nuclear Research)

on behalf of the JUNO Collaboration

Status and Physical Potential of JUNO

Jiangmen Underground Neutrino Observatory

LXXI International Conference "NUCLEUS-2021" September 20-25, 2021 (online)

Neutrino Mixing and Flavor Oscillations

Mass (flavor) eigenstates mix:

$$|\nu_{\alpha}\rangle = \sum_{i} U_{\alpha i}^{*} |\nu_{i}\rangle$$
$$\left(|\nu_{i}\rangle = \sum_{\alpha} U_{\alpha i} |\nu_{\alpha}\rangle\right)$$

where

 $|
u_{lpha}\rangle\,(lpha=e,\mu, au)$ – neutrino states with definite flavor $|
u_{\scriptscriptstyle 1}\rangle\,(i=1,2,3)$ – neutrino states with definite mass U is Pontecorvo-Maki-Nakagawa-Sakata matrix:

$$\begin{split} U &= \begin{bmatrix} U_{e1} & U_{e2} & U_{e3} \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \\ U_{\tau 1} & U_{\tau 2} & U_{\tau 3} \end{bmatrix} & c_{13} & 0 & s_{13}e^{-i\delta} \\ &= \begin{bmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{bmatrix} \begin{bmatrix} c_{13} & 0 & s_{13}e^{-i\delta} \\ 0 & 1 & 0 \\ -s_{13}e^{i\delta} & 0 & c_{13} \end{bmatrix} \begin{bmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} e^{i\alpha_{1}/2} & 0 & 0 \\ 0 & e^{i\alpha_{2}/2} & 0 \\ 0 & 0 & 1 \end{bmatrix} \\ &= \begin{bmatrix} c_{12}c_{13} & s_{12}c_{13} & s_{13}e^{-i\delta} \\ -s_{12}c_{23} - c_{12}s_{23}s_{13}e^{i\delta} & c_{12}c_{23} - s_{12}s_{23}s_{13}e^{i\delta} & s_{23}c_{13} \\ s_{12}s_{23} - c_{12}c_{23}s_{13}e^{i\delta} & -c_{12}s_{23} - s_{12}c_{23}s_{13}e^{i\delta} & c_{23}c_{13} \end{bmatrix} \begin{bmatrix} e^{i\alpha_{1}/2} & 0 & 0 \\ 0 & e^{i\alpha_{2}/2} & 0 \\ 0 & 0 & 1 \end{bmatrix} \end{split}$$

Predicted by Bruno Pontecorvo in 1957

Бруно Понтекоры

Experimentally confirmed by Super-Kamiokande and SNO (2015 Nobel Prize)

Probability of oscillation from flavor α to flavor β :

$$P_{\alpha \to \beta} = \left| \langle \nu_{\beta}(L) | \nu_{\alpha} \rangle \right|^{2} = \left| \sum_{i} U_{\alpha i}^{*} U_{\beta i} e^{-i\frac{m_{i}^{2}L}{2E}} \right|^{2}$$

Open Questions in Neutrino Oscillation Physics

- Neutrino mass ordering:
 normal ordering (NO): m₁ < m₂ < m₃
 or
 inverted ordering (IO): m₃ < m₁ < m₂ ?
- CP violation: $\delta_{CP} \neq 0$, π ?
- Octant of θ_{23} ? Maximal mixing with θ_{23} = 45°?
- Precise values of mixing angles and mass splittings
- Majorana (neutrino identical to anti-neutrino) or Dirac particles?
- Sterile states or only 3 flavors?
- Lorenz Invariance Violation?
- Non-standard interactions?

Probability of finding the α neutrino flavor in the i-th neutrino mass eigenstate. The CP-violating phase is varied $(0 \rightarrow 2\pi)$.

P.A. Zyla et al. (Particle Data Group), Prog.
Theor. Exp. Phys. (2020)]

Neutrino Mass Ordering Status

Currently the normal mass ordering is slightly more favored:

(as of Neutrino-2020)

Atmospheric and accelerator experiments rely on matter effects.

Their final sensitivities depend on (yet unknown) oscillation parameters.

Resolving 5σ sensitivity is not guaranteed.

Additional experimental efforts via other channels are crucial

JUNO Experiment Layout

JUNO: Underground Lab

JUNO Detector

• **Detection channel:** Inverse Beta-Decay (IBD)

$$\bar{\nu}_e + p \rightarrow e^+ + n$$

- Temporal and spatial coincident signal
- Positron carries energy information
- **Target:** 20 kton of LAB-based liquid scintillator
 - b high light yield ~10⁴ photons / MeV
 - highly transparent
- **Light detection:** 17612 20" PMTs + 25600 3" PMTs
 - >75% photo-coverage
 - two independent PMT systems
 - ▷ ~1300 p.e. / MeV

3% energy resolution @ 1 MeV (Gaussian sigma)

O(100k) events in 6 years

JUNO Scintillator

Composition:

LAB + PPO (2.5 g/L) + bis-MSB (3 mg/L)

LAB purification:

- 1. Al₂O₃ filtration column (optical properties improvement)
- 2. Distillation (heavy elements removal/ transparency improvement)
- 3. Water extraction (U/Th/K radioisotopes removal)
- 4. Steam/nitrogen stripping (removal of Ar, Kr, Rn gaseous impurities)

[JUNO collaboration, NIM-A 988, 2021]

Monitored during filling by OSIRIS (Online Scintillator Internal Radioactivity Investigation System)

[arXiv:2103.16900 (2021)]

JUNO Photo-multiplier Tubes

20" PMTs: 17612 for CD + 2400 for veto

- Maximize photo-coverage (~75%)
- Two types:

NNVT Micro-Channel Plate (¾ of total amount)

- Developed for JUNO
- Transmission and reflection cathodes → >30% QE

Hamamatsu R12860 (¼ of total amount)

- New type of bialkali photocathode
- Excellent TTS (2.7 ns FWHM)

3" PMTs: 25600 for CD

HZC Photonics

- Systematics control: determine nonlinear response of 20-in PMTs
- Increased dynamic range:
 - better resolution of muon reconstruction
 - · ready for very near supernova
- > Standalone measurement of solar parameters

JUNO Spectrum Ingredients

Neutrino generated in reactor cores:
 thousands of β-decay branches of fission reactions in reactor core (up to several MeV)

Observed via Inverse Beta-Decay (IBD):

$$\bar{\nu}_e + p \rightarrow e^+ + n$$

(reaction threshold: 1.8 MeV)

Positron energy used to recover neutrino energy:

$$E_{\nu} \simeq E_{e^+} + \Delta m_{n-p} + T_n$$

Information in JUNO Spectrum

← slow component (solar oscillation mode)

$$+\sin^2\theta_{12}\sin^2\left(\frac{\Delta m_{32}^2L}{4E}\right)\right]$$

Mass ordering:

NO:
$$|\Delta m_{31}^2| = |\Delta m_{32}^2| + \Delta m_{21}^2$$

IO: $|\Delta m_{31}^2| = |\Delta m_{32}^2| - \Delta m_{21}^2$

- Results in a slight difference of the oscillation pattern
- Accessible for JUNO thanks to large θ_{13} !

Information in JUNO Spectrum

← slow component (solar oscillation mode)

$$-\frac{\sin^2 2\theta_{13}}{\cos^2 \theta_{12} \sin^2 \left(\frac{\Delta m_{31}^2 L}{4E}\right) + \sin^2 \theta_{12} \sin^2 \left(\frac{\Delta m_{32}^2 L}{4E}\right)} + \frac{\tan^2 \theta_{12} \sin^2 \left(\frac{\Delta m_{32}^2 L}{4E}\right)}{(\text{atmospheric oscillation mode})}$$

Oscillation parameters:

- Two oscillation modes: solar and atmospheric
- Very pronounced minimum in solar mode
- Many (~20) oscillation cycles in atmospheric mode

Energy Resolution in JUNO

Mainly defined by:

- LS light yield (photon statistics)
- PMT detection efficiency
- Performance of energy reconstruction

The goal is 3% at 1 MeV

Energy Scale Calibration

Sources/Processes	Type	Radiation
$^{137}\mathrm{Cs}$	γ	$0.662~{ m MeV}$
$^{54}{ m Mn}$	γ	$0.835~{ m MeV}$
$^{60}\mathrm{Co}$	γ	$1.173+1.333\;{ m MeV}$
$^{40}{ m K}$	γ	$1.461~{ m MeV}$
$^{68}\mathrm{Ge}$	e^{+}	annihilation $0.511 + 0.511 \text{ MeV}$
241 Am-Be	n, γ	${ m neutron} + 4.43 \; { m MeV} \; (^{12}{ m C}^*)$
241 Am- 13 C	n, γ	${ m neutron} + 6.13~{ m MeV}~(^{16}{ m O}^*)$
$(\mathrm{n}{,}\gamma)\mathrm{p}$	γ	$2.22~{ m MeV}$
$(\mathrm{n},\gamma)^{12}\mathrm{C}$	γ	$4.94~{ m MeV}~{ m or}~3.68+1.26~{ m MeV}$

< 1% energy scale uncertainty

IBD signal and backgrounds

	Efficiency (%)	IBD Rate (day^{-1})
All IBDs	100	57.4
After Selection	82.2	47.1

Selection criteria:

- muon veto
- volume fiducialization
- energy cuts for e+ and neutron capture
- e+ / neutron capture time coincidence
- e+ / neutron capture spatial proximity

Background	Rate (day^{-1})
Geo-neutrinos	1.2
Accidentals	0.8
$^9 \text{Li}/^8 \text{He}$	1.4
Fast neutrons	0.1
$^{-13}\mathrm{C}(\alpha,\mathrm{n})^{16}\mathrm{O}$	0.05

Mass Ordering Determination Prospects

JUNO is the **only** experiment using vacuum oscillation:

- independent on $oldsymbol{\delta}_{ extsf{CP}}$ and $oldsymbol{ heta}_{ extsf{23}}$
- little dependence of matter effects (MSW contribution ~4%)

3σ sensitivity in 6 years of data taking

An update on JUNO NMO sensitivity is under preparation

Mass Ordering Determination Prospects

• JUNO is the **only** experiment using vacuum oscillation: independent on δ_{CP} and θ_{23} , little dependence of matter effects

3σ sensitivity in 6 years of data taking

• With $|\Delta m^2_{\mu\mu}|$ input JUNO sensitivity might be further improved

> 4σ (in 6 years) with external $|\Delta m^2_{\mu\mu}|$ (assuming 1% uncertainty)

- Strong synergies with other experiments:
 - through Δm_{31}^2 for atmospheric neutrinos (KM3NeT/ORCA [arXiv:2108.06293] and IceCube [Phys. ReV. D 101 (2020)])
 - through Δm_{32}^2 for accelerator neutrino (NOvA and T2K [arXiv:2008.11280], [Phys. Rev. D 103 (2021)])

> 5σ (in 6 years)
in case of joint analysis

Measurement of Oscillation Parameters

JUNO will be the first experiment to observe two modes of neutrino oscillations simultaneously:

'solar', driven by $\sin^2 \theta_{12}$ and Δm^2_{21}

'atmospheric', driven by $\sin^2\!\theta_{_{13}}$ and $\Delta m^2_{_{31}}$ ($\Delta m^2_{_{32}}$)

Main factors affecting sensitivity to oscillation parameters:

- reactor rate and shape uncertainty ← *TAO helps here!*
- backgrounds: mainly accidentals and geo-neutrino

(in %)	sin $^2 heta_{12}$	Δm^2_{21}	${\sf sin}^2m{ heta}_{13}$	$ \Delta m^2_{32} $
Current precision (NuFIT)	4.0	2.8	2.8	1.1
JUNO (6 years)	~0.5	~0.3	12	~0.2

Solar 8B Neutrinos

Another channel to measure solar oscillation parameters!

Oscillation media: Sun + Earth

Detection channel: elastic scattering on electrons

Energy threshold: 2 MeV

Signal / background: 60k / 30k (10 years)

Slight 1.4 σ tension for Δm_{21}^2 between KamLAND (7.5·10⁻⁵ eV²) and SNO+SK (6.1·10⁻⁵ eV²)

- 0.9% sensitivity to Day/Night asymmetry (1.1% in Super-K)
- Smaller Δm_{21}^2 leads to a larger Day-Night asymmetry
- Δm_{21}^2 precision similar to other solar measurements

Fine Structure in Reactor Anti-Neutrino Spectrum

Reactor $\overline{\nu}_e$ spectrum is composed of thousands of β -decay branches and might have fine structures.

State-of-the-art knowledge does not provide reliable detailed spectrum:

- 5-8% @ 1 MeV in Daya Bay, Double Chooz and RENO
- Huber-Mueller model uses about 30 virtual β-spectra without detailed structure
- Summation model has large systematic uncertainties and depends on choice of database (some data may be missing)

An unknown fine structure might produce pseudo-oscillation pattern
→ harmful for JUNO mass ordering measurement!

TAO: Taishan Antineutrino Observatory

An innovative apparatus:

- 1 ton fiducial volume / 2.6 tons of Gd-LS
- Almost full coverage with SiPM (~50% PDE @ -50°C)

30 x JUNO statistics

~2% at 1 MeV energy resolution (Gaussian sigma)

Measurement of reactor \overline{v}_e spectrum at 30 m distance from a Taishan NPP core (almost no oscillations):

- → will be sensitive to fine structure at least at the precision of JUNO
- → Provide model-independent reference for JUNO
- Improvement of nuclear databases

Planned to be online in 2022

TAO Light Sterile Neutrino

Motivation – observed tensions with 3-flavor paradigm:

- Reactor \overline{v}_{a} deficit with respect to the state-of-the-art prediction models
- Anomalous \overline{v}_e appearance in the \overline{v}_u beam at the LSND and MiniBooNE
- Deficit in number of v_e from radioactive calibration source in gallium experiments

Sterile neutrino could explain these anomalies

Setup:

baseline: ~30 m

detection efficiency: 50%

3 years of data taking (~1.8M events)

5% bin-to-bin uncertainty in 50 keV bins

TAO will provide new constraints in $0.1-3 \text{ eV}^2 \Delta m^2$ region

Atmospheric neutrino hundreds / year

- Complimentary NMO sensitivity via matter effect
- Atmospheric neutrino flux and spectra measurement

Supernova burst

5000 IBD / 2300 elastic scattering @ 10 kpc

- Determination of flavor content, energy spectrum and time evolution
- Part of Multi-messenger effort

Proton decay

three-fold time coincidence:

- 1) kinetic energy of K^+
- 2) decay daughters
- 3) Michel electron

Provide info for star formation rate, emission from CCSN and BH

Expected 3σ in ~400 IBD per year 10 years of data taking

Explore origin and thermal evolution of the Earth 5-6% flux precision in 10 years

Geo-

neutrino

Diffuse supernova flux (DSNB)

JUNO Collaboration

Country	Institute	Country	Institute	Country	Institute
Armenia	Yerevan Physics Institute	China	IMP-CAS	Germany	FZJ-IKP
Belgium	Universite libre de Bruxelles	China	SYSU	Germany	U. Mainz
Brazil	PUC	China	Tsinghua U.	Germany	U. Tuebingen
Brazil	UEL	China	UCAS	Italy	INFN Catania
Chile	PCUC	China	USTC	Italy	INFN di Frascati
Chile	SAPHIR	China	U. of South China	Italy	INFN-Ferrara
China	BISEE	China	Wu Yi U.	Italy	INFN-Milano
China /	Beijing Normal U.	China	Wuhan U.	Italy	INFN-Milano Bicocca
China	CAGS	China	Xi'an JT U.	Italy	INFN-Padova
China	ChongQing University	China	Xiamen University	Italy	INFN-Perugia
China	CIAE	China	Zhengzhou U.	Italy	INFN-Roma 3
China	DGUT	China	NUDT	Latvia	IECS
China	ECUST	China 🧖	CUG-Beijing	Pakistan	PINSTECH (PAEC)
China	Guangxi U.	China	ECUT-Nanchang City	Russia	INR Moscow
China	Harbin Institute of Technology	Croatia	UZ/RBI	Russia	JINR
China	IHEP	Czech	Charles U.	Russia	MSU
China	Jilin U.	Finland	University of Jyvaskyla	Slovakia	FMPICU
China	Jinan U.	France	IJCLab Orsay	Taiwan-China	National Chiao-Tung U.
China	Nanjing U.	France	CENBG Bordeaux	Taiwan-China	National Taiwan U.
China	Nankai U.	France	CPPM Marseille	Taiwan-China	National United U.
China	NCEPU	France	IPHC Strasbourg	Thailand	NARIT
China	Pekin U.	France	Subatech Nantes	Thailand	PPRLCU
China	Shandong U.	Germany	FZJ-ZEA	Thailand	SUT
China	Shanghai JT U.	Germany	RWTH Aachen U.	USA	UMD-G
China	IGG-Beijing	Germany	TUM	USA	UC Irvine
China	IGG-Wuhan	Germany	U. Hamburg		

Summary

Neutrino Oscillations

- Mass Ordering sensitivity:
 - 3σ in 6 years via oscillations in vacuum
 - 4σ with external $|\Delta m^2_{\mu\mu}|$
 - 5σ + in combination with atmospheric and long-baseline experiments
- Precise Measurement of Oscillation Parameters
 - sub-percent level for Δm_{21}^2 , $|\Delta m_{32}^2|$ and $\sin^2\theta_{12}$ in reactor IBD channel
 - independent measurement through solar channel

Data taking starts in 2022

Other Physics

- Atmospheric neutrino: spectrum + NMO info
- Geo-neutrino: 6% flux measurements is 6 years
- Supernova bursts: flavor composition, energy and time info
- DSNB sensitivity: few events per year
- Solar neutrino: B⁸ (60k/30k signal/background in 10 years)
- Proton decay and other rare events

TAO – a satellite detector

- Measurement of reactor spectrum fine structure – a proxy for JUNO and valuable data for future experiments
- Improved constraint on sterile neutrino in $0.1-3 \text{ eV}^2 \Delta m^2$ region