

OUTLINE

- Introduction to Solar neutrinos
- The Borexino Experiment
- Challenges and Analysis Strategy
- Final Results

Solar Neutrinos

Energy Spectrum of Solar Neutrinos

Fluxes as predicted by the Standard Solar Model [error on theoretical predictions]

CNO-cycle vs pp chain

CNO fusion cycle dominant in massive stars, Having higher temperature in their cores.

Sub-dominant process in Sun. Contributes <1% to solar energy

Haxton & Serenelli: The Astrophysical J. 687 (2008) 678

Why to study CNO Solar Neutrinos?

Acoustic wave velocity

- Proof of energy production via the CNO cycle in Sun and in stars where it is the dominant process for the conversion of hydrogen to helium.
- Metallicity (Z/X) in Sun's core
 - Z = abundance of elements heavier than H and He
 X = abundance of H and He
 - High metallicity (HZ) SSM: B16 SSM with older GS98 metallicity input, Z/X = 0.0229 Low metallicity (LZ) SSM: B16 SSM with newer AGSS09 metallicity input, Z/X = 0.0178

Species	HZ-Flux (cm ⁻² s ⁻¹)	LZ-Flux (cm ⁻² s ⁻¹)	Relative difference(%)
pp	5.98(1 ± 0.006)×10 ¹⁰	6.03(1 ± 0.005) ×10 ¹⁰	-0.8
pep	1.44(1 ± 0.01) ×10 ⁸	1.46(1 ± 0.009) ×10 ⁸	-1.4
⁷ Be	4.93(1 ± 0.06) ×10 ⁹	4.50(1 ± 0.06) ×10 ⁹	8.9
8B	5.46(1 ± 0.12) ×10 ⁶	4.50(1 ± 0.12) ×10 ⁶	17.6
¹³ N	2.78(1 ± 0.15) ×10 ⁸	2.04(1 ± 0.14) ×10 ⁸	26.6
¹⁵ O	2.05(1 ± 0.17) ×10 ⁸	1.44(1 ± 0.16) ×10 ⁸	29.7
¹⁷ F	5.29(1 ± 0.20) ×10 ⁸	3.26(1 ± 0.18) ×10 ⁸	38.3

Fractional sound speed difference as a function of radius

LZ SSM Predictions disagree with helioseismological data

N. Vinyoles et al. Astrop. J 836 (2017) 202

The Borexino Detector

- Located in Laboratori Nazionali del Gran Sasso (LNGS), Italy.
- The most radio-pure liquid scintillator detector in the world.
- ~280 tons of liquid scintillator
- Cosmic Muon flux suppression by $\sim 10^6$
- Effective Light Yield: 500 photoelectrons/MeV with ~2000 PMTs
- Energy resolution: 5% @ 1 MeV
- Position resolution: 10cm @ 1 MeV
- Pulse shape discrimination methods available (e⁻/e⁺,α/β)
- Calibration with radioactive sources.

Detection Principle

- No threshold
- All flavours of neutrinos detected (cross section for v_e ~6x higher)
- Even mono-energetic neutrinos continuous spectrum with a Compton-like edge.

Borexino Timeline

Phase-1:

First observation of the solar

- ⁷Be neutrino
- pep neutrino
- 8B (>3 MeV)

Phase-2:

- First observation of the solar pp neutrinos, Nature 512 (2014) 383-386
- pp-chain spectroscopy, Nature 562 (2018) 505–510. (pp (10.5%), ⁷Be (2.7%), pep (>5σ, 17%), ⁸B (3 MeV threshold, 8%), First Borexino limit on hep neutrinos)

Phase-3:

Experimental Evidence of neutrinos produced in the CNO fusion cycle in the Sun, Nature 587 (2020) 577–582

Solar Neutrino Analysis Strategy

- Neutrino signal indistinguishable from β/γ radioactivity.
- Selection Cuts are applied to data to reduce contribution from backgrounds.
- Perform spectral fit using Monte Carlo simulations derived Probability Density Functions (PDFs) exploiting difference in the energy spectra of all detected species

Interaction rate of each species (neutrino + residual backgrounds)

Borexino Monte Carlo:

- Geant4 based;
- Full simulation of all processes: event generation, energy deposition, light production (scintillation and Cherenkov), propagation and collection;
- All known material properties included;
- Time variations of the detector channels included.

Main Backgrounds

Internal backgrounds: 238 U, 232 Th negligible (~ 10^{-19} g/g), 14 C 85 Kr, 210 Bi, 210 Po

External backgrounds: 208Tl, 214Bi, 40K

Three Fold Coincidence (TFC) algorithm

Borexino Phase-II results

Species	Rate [cpd/100t]	Flux [cm ⁻² s ⁻¹]
рр	134±10 ⁺⁶ -10	6.1±0.5 ^{+0.3} _{-0.5} ×10 ¹⁰
pep	2.43±0.36 ^{0.15} _{-0.22} (HZ) 2.65±0.36 ^{0.15} _{-0.24} (LZ)	1.27±0.19 ^{+0.08} _{-0.12} ×10 ⁸ 1.39±0.19 ^{+0.08} _{-0.13} ×10 ⁸
⁷ Be	48.3±1.1 ^{+0.4} -0.7	4.99±0.11 ^{+0.06} _{-0.08} ×10 ⁹
8B	0.223 ^{+0.015} _{-0.016} ±0.006	5.68 ^{+0.39} -0.41 ±0.03×10 ⁶
CNO	< 8.1 (95 % C.L.)	< 7.9 × 10 ⁸ (95 % C.L)
hep	< 0.002 (90 % C. L.)	< 2.2 ×10 ⁵ (90 % C. L.)

Spectroscopy of all pp-cycle neutrinos in Phase-2.

Limit on CNO cycle neutrinos.

No detection of CNO neutrinos yet.

Indication towards HZ-SSM predictions

Comprehensive measurement of ppchain solar neutrinos (Nature 562, 505– 510 (2018))

Challenge in CNO detection

Borexino Data: Phase 3 (July 2016-February 2020), Exposure 1072 days * 71.3 tons

Spectral correlation of CNO, pep v signal and 210Bi decay due to spectral degeneracy

- Low rate of CNO neutrinos
- No prominent spectral feature
- Correlation with other species

If all 3 species are left unconstrained, spectral fit is sensitive only to the sum of the three rates.

Constraining pep-v rate to 1.4% precision level:

- constraint based on solar luminosity
- Global analysis solar neutrino experimental data excluding Phase-3.

pep- ν rate = 2.74± 0.04 cpd/100ton

Bergström et al https://doi.org/10.1007/JHEP03(2016)1 32

²¹⁰Bi Constraint

Constraining ²¹⁰Bi through its daughter nuclei ²¹⁰Po

- Source of ²¹⁰Bi
- Below analysis threshold (end point energy: 63.5keV)

- Gaussian peak spectral shape
- Decay via emitting α
- Event by event identification through MLP α/β pulse shape discrimination

In secular equilibrium, ²¹⁰Bi and ²¹⁰Po rates are equal.

²¹⁰Bi Constraint: Challenge

- Temperature variation due to seasonal effects causing convective currents and brings ²¹⁰Po from nylon vessel surface to fiducial volume.
- Secular equilibrium is broken.
- Two contributions for ²¹⁰Po:
 ²¹⁰Po from ²¹⁰Bi decay and ²¹⁰Po from vessel.

TEMPORAL
EVOLUTION OF 210POLONIUM RATE

Phase-2 Seasonal effects

²¹⁰Bi Constraint: Solution

Thermally stabilise the detector

Thermal insulation of detector using mineral wool (Dec 2015)

Achievement of excellent temperature stability due to stable vertical gradient of $\Delta T/\Delta z > 0$.

Effort of over 6 years

Temperature monitoring probes and active temperature control

Low Polonium Field

Identifying low ²¹⁰ Po rate region to get the ²¹⁰Bi constraint

Upper limit on ²¹⁰Bi

Low Polonium field region (20 tons) < Fiducial Volume (71.3 tons)

To assume $R(^{210}Bi_{FV}) = R(^{210}Bi_{LPoF})$, uniform distribution of ^{210}Bi should be proven.

Analyzing spatial distribution of β events in energy range where relative ²¹⁰Bi contribution is maximal.

Rate variations are attributed to ²¹⁰Bi events (conservative approach)

Radial distribution

Angular distribution

R(²¹⁰Bi_{EV}) is homogeneous within error of 0.78cpd/100 t.

Considering all other systematics, R(210Bi) <= (11.5±1.3) cpd/100 tons

Multivariate Spectral Fit

Fit in energy range (320keV - 2640keV) with pep- ν rate and ²¹⁰Bi rate constraints pep- ν rate: 2.74± 0.04 cpd/100ton, ²¹⁰Bi rate \leq 11.5 ± 1.3 cpd/100ton

Rate of other species are left free.

Best fit CNO-ν rate = 7.2cpd/100ton

Systematics Evaluation

Fit Configuration

Negligible

¹¹C spectrum deformation due to noise cuts

²¹⁰Bi decay Spectrum shape

Detector response

Vary detector response parameters within range allowed by calibration

- Energy scale (0.23%)
- non-uniformity (0.28%)
- non-linearity (0.4%)

Total systematic error: $^{+0.6}$ $_{-0.5}$ cpd/100 tons.

Results

CNO rate with sys = $7.2^{+3.0}$ counts/day/100 ton.

 φ (CNO with sys) = 7.0^{+3.0}_{-2.0} x 10⁸ cm⁻² s⁻¹

Borexino (⁷Be + ⁸B + CNO) disfavors LZ SSM @ 2.1σ only

Significance of CNO Detection

Null Hypothesis (no CNO) Test

Profile Likelihood ratio test statistics:

$$q = -2\log \frac{\mathcal{L}(CNO = 0)}{\mathcal{L}(CNO)}$$

Generating ~14 million "distorted" datasets with no CNO injected and analysed as regular data (i.e "distorted" datasets are fitted with undeformed PDFs)

$$q_0 (data) = 30.05$$

No CNO hypothesis disfavored with ≥ 5σ significance at 99% CL

Counting Analysis cross check

Specie (S _i)	Events	
N	823 ± 28.7	
²¹⁰ Bi	261 \pm 29.6	
u(pep)	171.7 ± 2.4	
$ u(^7 \mathrm{Be})$	86.8 ± 2.6	
¹¹ C	57.9 ± 5.8	
Others	15.6 ± 1.6	
$\sum_{i} S_{i}$	593.5 ± 30.4	
$N-\sum_i S_i$	229.5 \pm 41.8	

- Choose an energy Region of Interest (ROI) (780–885 keV) where the expected discovery significance of CNO neutrinos is maximized.
- Count the events in ROI
- Subtract all identified background events, which are estimated based on independent constraints (pep ν and 210 Bi) and analytical response model.
- Detector response systematics accounted varying the fraction of events inside the ROI for each component.

 $R(CNO) = 5.6 \pm 1.6 \text{ cpd/}100 \text{ t}$

 3.5σ significance

Confirmation of signal detection

Summary

- Borexino has detected neutrinos from the CNO cycle in the Sun with a significance of 5σ.
- Borexino has proved experimentally, for the first time, the existence of the catalyzed hydrogen fusion mechanism, proposed in the 1930s by Bethe and Weiszäcker.

Thank You

BACKUP

²¹⁰Po spatial distribution fits

Paraboidal fit

Paraboidal along x-y + Cubic spline along z

Complex structure along the z axis are accounted with a spline model within a Bayesian framework

Toy MC validation:

Datasets of 2 years livetime each with supported and convective 210Po

No negative bias in both methods → conservative ²¹⁰Bi upper limit → no false enhancement of CNO rate

LPoF with time

Low Polonium Field (LPoF) at around 80cm above equator, but it moves over time

Reconstructed central position of LPoF over time for different methods

Simulation of ²¹⁰Bi uniformity

Evolution of an initial non uniform 210Bi distribution pre-insulation and with the experimental temperature distributions at that time \rightarrow uniformity reached in 1 year in the entire inner vessel

Correlation plot for the rates of pep, CNO neutrinos and ²¹⁰Bi decay.

M. Agostini et al. (Borexino Collaboration), "Simultaneous Precision Spectroscopy of pp, 7Be, and pep Solar Neutrinos with Borexino Phase-II", arXiv:1707.09279. Physical Review D 100 (2019) p. 082004

