OUTLINE - Introduction to Solar neutrinos - The Borexino Experiment - Challenges and Analysis Strategy - Final Results #### **Solar Neutrinos** ## Energy Spectrum of Solar Neutrinos Fluxes as predicted by the Standard Solar Model [error on theoretical predictions] ## CNO-cycle vs pp chain CNO fusion cycle dominant in massive stars, Having higher temperature in their cores. Sub-dominant process in Sun. Contributes <1% to solar energy Haxton & Serenelli: The Astrophysical J. 687 (2008) 678 ### Why to study CNO Solar Neutrinos? Acoustic wave velocity - Proof of energy production via the CNO cycle in Sun and in stars where it is the dominant process for the conversion of hydrogen to helium. - Metallicity (Z/X) in Sun's core - Z = abundance of elements heavier than H and He X = abundance of H and He - High metallicity (HZ) SSM: B16 SSM with older GS98 metallicity input, Z/X = 0.0229 Low metallicity (LZ) SSM: B16 SSM with newer AGSS09 metallicity input, Z/X = 0.0178 | Species | HZ-Flux (cm ⁻² s ⁻¹) | LZ-Flux (cm ⁻² s ⁻¹) | Relative
difference(%) | |-----------------|---|---|---------------------------| | pp | 5.98(1 ± 0.006)×10 ¹⁰ | 6.03(1 ± 0.005) ×10 ¹⁰ | -0.8 | | pep | 1.44(1 ± 0.01) ×10 ⁸ | 1.46(1 ± 0.009) ×10 ⁸ | -1.4 | | ⁷ Be | 4.93(1 ± 0.06) ×10 ⁹ | 4.50(1 ± 0.06) ×10 ⁹ | 8.9 | | 8B | 5.46(1 ± 0.12) ×10 ⁶ | 4.50(1 ± 0.12) ×10 ⁶ | 17.6 | | ¹³ N | 2.78(1 ± 0.15) ×10 ⁸ | 2.04(1 ± 0.14) ×10 ⁸ | 26.6 | | ¹⁵ O | 2.05(1 ± 0.17) ×10 ⁸ | 1.44(1 ± 0.16) ×10 ⁸ | 29.7 | | ¹⁷ F | 5.29(1 ± 0.20) ×10 ⁸ | 3.26(1 ± 0.18) ×10 ⁸ | 38.3 | Fractional sound speed difference as a function of radius LZ SSM Predictions disagree with helioseismological data N. Vinyoles et al. Astrop. J 836 (2017) 202 #### The Borexino Detector - Located in Laboratori Nazionali del Gran Sasso (LNGS), Italy. - The most radio-pure liquid scintillator detector in the world. - ~280 tons of liquid scintillator - Cosmic Muon flux suppression by $\sim 10^6$ - Effective Light Yield: 500 photoelectrons/MeV with ~2000 PMTs - Energy resolution: 5% @ 1 MeV - Position resolution: 10cm @ 1 MeV - Pulse shape discrimination methods available (e⁻/e⁺,α/β) - Calibration with radioactive sources. ## **Detection Principle** - No threshold - All flavours of neutrinos detected (cross section for v_e ~6x higher) - Even mono-energetic neutrinos continuous spectrum with a Compton-like edge. #### **Borexino Timeline** #### Phase-1: First observation of the solar - ⁷Be neutrino - pep neutrino - 8B (>3 MeV) #### Phase-2: - First observation of the solar pp neutrinos, Nature 512 (2014) 383-386 - pp-chain spectroscopy, Nature 562 (2018) 505–510. (pp (10.5%), ⁷Be (2.7%), pep (>5σ, 17%), ⁸B (3 MeV threshold, 8%), First Borexino limit on hep neutrinos) #### Phase-3: Experimental Evidence of neutrinos produced in the CNO fusion cycle in the Sun, Nature 587 (2020) 577–582 ## Solar Neutrino Analysis Strategy - Neutrino signal indistinguishable from β/γ radioactivity. - Selection Cuts are applied to data to reduce contribution from backgrounds. - Perform spectral fit using Monte Carlo simulations derived Probability Density Functions (PDFs) exploiting difference in the energy spectra of all detected species Interaction rate of each species (neutrino + residual backgrounds) #### **Borexino Monte Carlo:** - Geant4 based; - Full simulation of all processes: event generation, energy deposition, light production (scintillation and Cherenkov), propagation and collection; - All known material properties included; - Time variations of the detector channels included. ### Main Backgrounds Internal backgrounds: 238 U, 232 Th negligible (~ 10^{-19} g/g), 14 C 85 Kr, 210 Bi, 210 Po External backgrounds: 208Tl, 214Bi, 40K Three Fold Coincidence (TFC) algorithm #### Borexino Phase-II results | Species | Rate
[cpd/100t] | Flux [cm ⁻² s ⁻¹] | |-----------------|--|--| | рр | 134±10 ⁺⁶ -10 | 6.1±0.5 ^{+0.3} _{-0.5} ×10 ¹⁰ | | pep | 2.43±0.36 ^{0.15} _{-0.22} (HZ)
2.65±0.36 ^{0.15} _{-0.24} (LZ) | 1.27±0.19 ^{+0.08} _{-0.12} ×10 ⁸
1.39±0.19 ^{+0.08} _{-0.13} ×10 ⁸ | | ⁷ Be | 48.3±1.1 ^{+0.4} -0.7 | 4.99±0.11 ^{+0.06} _{-0.08} ×10 ⁹ | | 8B | 0.223 ^{+0.015} _{-0.016} ±0.006 | 5.68 ^{+0.39} -0.41 ±0.03×10 ⁶ | | CNO | < 8.1 (95 % C.L.) | < 7.9 × 10 ⁸ (95 % C.L) | | hep | < 0.002
(90 % C. L.) | < 2.2 ×10 ⁵
(90 % C. L.) | # **Spectroscopy of all pp-cycle** neutrinos in Phase-2. #### Limit on CNO cycle neutrinos. No detection of CNO neutrinos yet. **Indication towards HZ-SSM predictions** Comprehensive measurement of ppchain solar neutrinos (Nature 562, 505– 510 (2018)) ### Challenge in CNO detection Borexino Data: Phase 3 (July 2016-February 2020), Exposure 1072 days * 71.3 tons Spectral correlation of CNO, pep v signal and 210Bi decay due to spectral degeneracy - Low rate of CNO neutrinos - No prominent spectral feature - Correlation with other species If all 3 species are left unconstrained, spectral fit is sensitive only to the sum of the three rates. ### Constraining pep-v rate to 1.4% precision level: - constraint based on solar luminosity - Global analysis solar neutrino experimental data excluding Phase-3. pep- ν rate = 2.74± 0.04 cpd/100ton Bergström et al https://doi.org/10.1007/JHEP03(2016)1 32 #### ²¹⁰Bi Constraint #### Constraining ²¹⁰Bi through its daughter nuclei ²¹⁰Po - Source of ²¹⁰Bi - Below analysis threshold (end point energy: 63.5keV) - Gaussian peak spectral shape - Decay via emitting α - Event by event identification through MLP α/β pulse shape discrimination In secular equilibrium, ²¹⁰Bi and ²¹⁰Po rates are equal. ## ²¹⁰Bi Constraint: Challenge - Temperature variation due to seasonal effects causing convective currents and brings ²¹⁰Po from nylon vessel surface to fiducial volume. - Secular equilibrium is broken. - Two contributions for ²¹⁰Po: ²¹⁰Po from ²¹⁰Bi decay and ²¹⁰Po from vessel. TEMPORAL EVOLUTION OF 210POLONIUM RATE Phase-2 Seasonal effects #### ²¹⁰Bi Constraint: Solution #### Thermally stabilise the detector Thermal insulation of detector using mineral wool (Dec 2015) Achievement of excellent temperature stability due to stable vertical gradient of $\Delta T/\Delta z > 0$. Effort of over 6 years Temperature monitoring probes and active temperature control #### Low Polonium Field Identifying low ²¹⁰ Po rate region to get the ²¹⁰Bi constraint ### Upper limit on ²¹⁰Bi Low Polonium field region (20 tons) < Fiducial Volume (71.3 tons) To assume $R(^{210}Bi_{FV}) = R(^{210}Bi_{LPoF})$, uniform distribution of ^{210}Bi should be proven. Analyzing spatial distribution of β events in energy range where relative ²¹⁰Bi contribution is maximal. Rate variations are attributed to ²¹⁰Bi events (conservative approach) Radial distribution Angular distribution R(²¹⁰Bi_{EV}) is homogeneous within error of 0.78cpd/100 t. Considering all other systematics, R(210Bi) <= (11.5±1.3) cpd/100 tons ## Multivariate Spectral Fit Fit in energy range (320keV - 2640keV) with pep- ν rate and ²¹⁰Bi rate constraints pep- ν rate: 2.74± 0.04 cpd/100ton, ²¹⁰Bi rate \leq 11.5 ± 1.3 cpd/100ton Rate of other species are left free. **Best fit CNO-ν rate = 7.2cpd/100ton** ### Systematics Evaluation Fit Configuration Negligible ¹¹C spectrum deformation due to noise cuts ²¹⁰Bi decay Spectrum shape Detector response Vary detector response parameters within range allowed by calibration - Energy scale (0.23%) - non-uniformity (0.28%) - non-linearity (0.4%) Total systematic error: $^{+0.6}$ $_{-0.5}$ cpd/100 tons. #### Results CNO rate with sys = $7.2^{+3.0}$ counts/day/100 ton. φ (CNO with sys) = 7.0^{+3.0}_{-2.0} x 10⁸ cm⁻² s⁻¹ Borexino (⁷Be + ⁸B + CNO) disfavors LZ SSM @ 2.1σ only ## Significance of CNO Detection #### **Null Hypothesis (no CNO) Test** Profile Likelihood ratio test statistics: $$q = -2\log \frac{\mathcal{L}(CNO = 0)}{\mathcal{L}(CNO)}$$ Generating ~14 million "distorted" datasets with no CNO injected and analysed as regular data (i.e "distorted" datasets are fitted with undeformed PDFs) $$q_0 (data) = 30.05$$ No CNO hypothesis disfavored with ≥ 5σ significance at 99% CL ## Counting Analysis cross check | Specie (S _i) | Events | | |--------------------------|------------------|--| | N | 823 ± 28.7 | | | ²¹⁰ Bi | 261 \pm 29.6 | | | u(pep) | 171.7 ± 2.4 | | | $ u(^7 \mathrm{Be})$ | 86.8 ± 2.6 | | | ¹¹ C | 57.9 ± 5.8 | | | Others | 15.6 ± 1.6 | | | $\sum_{i} S_{i}$ | 593.5 ± 30.4 | | | $N-\sum_i S_i$ | 229.5 \pm 41.8 | | - Choose an energy Region of Interest (ROI) (780–885 keV) where the expected discovery significance of CNO neutrinos is maximized. - Count the events in ROI - Subtract all identified background events, which are estimated based on independent constraints (pep ν and 210 Bi) and analytical response model. - Detector response systematics accounted varying the fraction of events inside the ROI for each component. $R(CNO) = 5.6 \pm 1.6 \text{ cpd/}100 \text{ t}$ 3.5σ significance **Confirmation of signal detection** ### **Summary** - Borexino has detected neutrinos from the CNO cycle in the Sun with a significance of 5σ. - Borexino has proved experimentally, for the first time, the existence of the catalyzed hydrogen fusion mechanism, proposed in the 1930s by Bethe and Weiszäcker. # Thank You ## **BACKUP** ## ²¹⁰Po spatial distribution fits #### Paraboidal fit Paraboidal along x-y + Cubic spline along z Complex structure along the z axis are accounted with a spline model within a Bayesian framework #### Toy MC validation: Datasets of 2 years livetime each with supported and convective 210Po No negative bias in both methods → conservative ²¹⁰Bi upper limit → no false enhancement of CNO rate #### LPoF with time Low Polonium Field (LPoF) at around 80cm above equator, but it moves over time Reconstructed central position of LPoF over time for different methods ### Simulation of ²¹⁰Bi uniformity Evolution of an initial non uniform 210Bi distribution pre-insulation and with the experimental temperature distributions at that time \rightarrow uniformity reached in 1 year in the entire inner vessel Correlation plot for the rates of pep, CNO neutrinos and ²¹⁰Bi decay. M. Agostini et al. (Borexino Collaboration), "Simultaneous Precision Spectroscopy of pp, 7Be, and pep Solar Neutrinos with Borexino Phase-II", arXiv:1707.09279. Physical Review D 100 (2019) p. 082004