

Precision measurements of ¹⁴⁴Ce-¹⁴⁴Pr beta-spectra with Si(Li)-spectrometers

I. Alekseev, S. Bakhlanov, A. Derbin, I. Drachnev, I. Kotina, I. Lomskaya, M. Mikulich, <u>V. Muratova</u>, N. Niyazova, D. Semenov, M. Trushin, E. Unzhakov St. Petersburg Nuclear Physics Inst., NRC "Kurchatov Institute", Gatchina, Russia

Si(Li) detectors produced in PNPI with diameter of sensitive region 16 mm, thick 9 mm, I=10 pA at 1000 V. The energy resolution measured with γ lines of ²⁴¹Am is FWHM= 1.1 keV. The source was deposited into a small concavity in the center of one of the detectors; the second one was attached to the top of the first one, making up a 4 geometry.

β-spectrometer consists of a total-absorption Si(Li) detector and a thin drift Si detector. The use of coincidences between the signals from the thick and thin detectors makes it possible to efficiently separate β radiation from X- and γ- rays.

Decay schemes of ¹⁴⁴Ce -¹⁴⁴Pr

Q _β ¹⁴⁴ Ce	Q _β ¹⁴⁴ Pr	γ ¹⁴⁴ Ce	γ ¹⁴⁴ Pr	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
318.7	2997.5	133.5	696.5	Q _{ρ_} 318.7 Q _{ρ_} 2997.5 EC 61 Q _{ε0} 2331.8 Q _{ρ_} 550
(76.5%)	(97.9%)	(11.1%)	(1.3%)	
185.2	2301.0	80.1	2185.7	<u>0+ 2.29×10¹⁵ y</u>
(19.6%)	(1.04%)	(1.36%)	(0.69%)	
238.6 (3.9%)	811.8 (1.05%)	41.0 (0.26%)	1489.1 (0.28%)	1440Nd ↓ α Q _α 1905.1

¹⁴⁴Ce-¹⁴⁴Pr source continues to be the most promising for searches for neutrino oscillations to a sterile state. The shape of 144Pr β-spectrum has a significant effect on the precision of determining of oscillation parameters for sterile neutrino.

Compound of the Si(Li) detectors was installed into the vacuum cryostat and cooled down to the liquid nitrogen temperature. The electronics included a multichannel 14-bit ADC with 250 MHz and made it possible to select (anti) coincident events from both detectors.

Gaussian response function of 4π -spectrometer allows to directly measure the energy of electrons in β -decay and, accordingly, to determine the spectrum of electron antineutrinos. The measurement of total e-spectrum practically solves the problem if anti-v spectrum/

To study allowed β-transition to the 1⁻ excited state of 144Nd with excitation energy of 2185 keV the BGO 3" scintillator crystal was located on the top of the setup for the γ signals detection in coincidence with the signals from the semiconductor detectors.

For the neutrino with the mass in the interval of 150–350 keV, new upper limits on mixing parameter |u_{eH}|²≤ (2-5)×10⁻³ have been obtained. JETP Lett. 108 499 2018∕ The β -spectra theoretical description: $N(W) = F(W;Z)PW(W - W0)^2C(W)$, where Wand P are total energy and momenta of the electron, F(W;Z) - Fermi-function. The form-factor parameters that were obtained are: $C(W) = 1 + (-0.02877 \pm 0.00028)W$ $+ (-0.11722 \pm 0.00297)W^1$. Parameters of shape factor are measured with 1% precision that is enough for new neutrino experiments with ¹⁴⁴Ce-¹⁴⁴Pr source.

S. Bakhlanov et al., 4π semiconductor beta-spectrometer for measurement of ¹⁴⁴Ce - ¹⁴⁴Pr spectra, Journal of Physics: Conf. Ser. 1390 (2019) 012117 I.E.Alexeev et al., Beta-spectrometer with Si-detectors for the study of ¹⁴⁴Ce-¹⁴⁴Pr decays, Nuclear Inst. and Methods, A 890, 64-67, (2018) N. V. Bazlov et al., A Beta Spectrometer Based on Silicon Detectors, Instruments and Experimental Techniques, 2018, Vol. 61, No. 3, pp. 323