

Angular correlations of particle yield ratios

Igor Altsybeev, Vitaliy Petrov (St.Petersburg State University)

NUCLEUS-2021

September 23

Intro: observables for heavy-ion collision studies

In central Pb-Pb collisions at LHC energies, ~2000 particles within $|\eta| < 0.5$.

Many "event-averaged" observables can be studied: particle yields, spectra, flow harmonics...

More differentially, one can study correlations, e.g. in emission angles

Event-by-event measurements:

the fluctuations are studied over the ensemble of the events.

fluctuating net-charge, number of protons, mean p_T, forward-backward yields, etc.

Why e-by-e fluctuations:

- they help to characterize the properties of the "bulk" of the system
- fluctuations also are closely related to dynamics of the phase transitions

Landscape of integral and differential observables

Differential correlations between + – charges (Balance Functions)

$$B(\Delta \eta) = \frac{1}{2} \left(\frac{\rho_2^{(+,-)} - \rho_2^{(+,+)}}{\rho_1^{(+)}} + \frac{\rho_2^{(-,+)} - \rho_2^{(-,-)}}{\rho_1^{(-)}} \right)$$

Bass et al., Phys. Rev. Lett. 85 (2000) 2689

Physics picture: charge diffusion in the medium Affected by: radial flow, resonance decays, HBT, Coulomb effects

cartoon by M.Janik

\rightarrow STAR and ALICE reveal narrowing of BF with centrality:

Differential angular correlations: typical definitions

2

This normalization removes sensitivity to E-by-E fluctuations $\rightarrow R_2$ is identically zero in the absence of any two-particle correlations

Figures: note anti-correlation of same-sign baryons at small angular separations

I.Altsybeev, V.Petrov, Angular correlations of particle yield ratios

3

Integrated observable: particle number fluctuations

 $r = n_a/n_b$ – ratio of yields

s Integrated observable (approximation):

Variance of the ratio (norm.):

Pruneau, Voloshin, Gavin, Phys.Rev. C66 (2002) 044904

- measures deviations from Poissonian behaviour
- robust against volume fluctuations, efficiency losses
- sensitive to correlations between species a, b
- affected by resonance decays

3

Integrated observable: particle number fluctuations

 $r = n_a/n_b$ – ratio of yields //

a^b Single η-window^η

Variance of the ratio (norm.):

 $\nu \equiv \frac{\langle \Delta r^2 \rangle}{\langle r \rangle^2}$

$$\nu_{dyn} \equiv \nu - \nu_{stat} = \frac{\langle n_a(n_a - 1) \rangle}{\langle n_a \rangle^2} + \frac{\langle n_b(n_b - 1) \rangle}{\langle n_b \rangle^2} - 2\frac{\langle n_a n_b \rangle}{\langle n_a \rangle \langle n_b \rangle}$$

Pruneau, Voloshin, Gavin, Phys.Rev. C66 (2002) 044904

- measures deviations from Poissonian behaviour
- robust against volume fluctuations, efficiency losses
- sensitive to correlations between species a, b
- affected by resonance decays

Observations:

- v_{dyn}[π,p]: increasing correlation with decreasing centrality
- v_{dyn}[π,K]: increasing anti-correlation between π and K or increasing dynamical fluctuations with increasing centrality
- Models fail to describe data

Differential correlations between ratios of particle yields

 $r = n_a/n_b$ – ratio of yields Single n-window $\nu \equiv$ **Two η-windows** *Correlation strength:* $v_{FB} =$

I.A., EPJ Web of Conf. 204, 2019 arXiv:1901.01635

$$v_{dyn} \equiv v - v_{stat} = \frac{\langle n_a(n_a - 1) \rangle}{\langle n_a \rangle^2} + \frac{\langle n_b(n_b - 1) \rangle}{\langle n_b \rangle^2} - 2\frac{\langle n_a n_b \rangle}{\langle n_a \rangle \langle n_b \rangle}$$

Pruneau, Voloshin, Gavin, Phys.Rev. C66 (2002) 044904

robust against volume fluctuations, efficiency losses

Differential observable (approximation):

- keeps good properties of v_{dyn}
- if independent particle production $\rightarrow v_{FB} = 0$
- if only short-range effects (decays, jets)

 \rightarrow at large $\eta_{gap} v_{FB} = 0$

- not the case for the "classical" v_{dyn}

Examples:

- kaon-to-pion ratio $r = n_K / n_\pi$
- baryon-to-pion ratio $r = n_{proton} / n_{\pi}$

Physics cases of interest:

correlations between strangeness or
baryon production at large η gaps
(string interactions, thermal models, ...)

Angular correlations between yield ratios: check approximation

Good agreement between direct calculations and the approximation

4

Angular correlations between yield ratios: check robustness to VF

Volume Fluctuations: when system size changes E-by-E (e.g. due impact parameter fluctuations)

It can be shown that in an independent sources model:

Assumptions:

5

- number of *positive* particles in each event is from Gauss, <*N*>=80, σ=4
- particles are distributed within |η|<2
- for each positive particle there is one *negative* (charge conservation)

- a binomial distribution of K⁺ (others are pions) → GCE
- … or assign a strictly fixed fraction of K⁺ → CE

Assumptions:

5

- number of *positive* particles in each event is from Gauss, <N>=80, σ=4
- particles are distributed within |η|<2
- for each positive particle there is one *negative* (charge conservation)

Then particle ID is assigned, and we can simulate

- a binomial distribution of K⁺ (others are pions) → GCE
- … or assign a strictly fixed fraction of K⁺ → CE

I.Altsybeev, V.Petrov, Angular correlations of particle yield ratios

Assumptions:

5

- number of *positive* particles in each event is from Gauss, <N>=80, σ=4
- particles are distributed within |η|<2
- for each positive particle there is one *negative* (charge conservation)

- a binomial distribution of K⁺ (others are pions) → GCE
- … or assign a strictly fixed fraction of K⁺ → CE

 $v_{FB} = -$

Assumptions:

5

- number of *positive* particles in each event is from Gauss, <N>=80, σ=4
- particles are distributed within |η|<2
- for each positive particle there is one *negative* (charge conservation)

- a binomial distribution of K⁺ (others are pions) → GCE
- … or assign a strictly fixed fraction of K⁺ → CE

 $v_{FB} = -$

Assumptions:

5

- number of *positive* particles in each event is from Gauss, <N>=80, σ=4
- particles are distributed within |η|<2
- for each positive particle there is one *negative* (charge conservation)

- a binomial distribution of K⁺ (others are pions) → GCE
- … or assign a strictly fixed fraction of K⁺ → CE

 $v_{FB} = -$

Assumptions:

5

- number of *positive* particles in each event is from Gauss, <N>=80, σ=4
- particles are distributed within |η|<2
- for each positive particle there is one *negative* (charge conservation)

- a binomial distribution of K⁺ (others are pions) → GCE
- … or assign a strictly fixed fraction of K⁺ → CE

 $v_{FB} = -$

Assumptions:

5

- number of *positive* particles in each event is from Gauss, <N>=80, σ=4
- particles are distributed within |η|<2
- for each positive particle there is one *negative* (charge conservation)

- a binomial distribution of K⁺ (others are pions) → GCE
- … or assign a strictly fixed fraction of K⁺ → CE

Assumptions:

5

- number of *positive* particles in each event is from Gauss, <N>=80, σ=4
- particles are distributed within |η|<2
- for each positive particle there is one *negative* (charge conservation)

Then particle ID is assigned, and we can simulate

- a binomial distribution of K^+ (others are pions) \rightarrow GCE
- … or assign a strictly fixed fraction of K⁺ → CE

→ v_{FB} allows one to separate short-range effects from "global" fluctuations

Yield ratio correlations as a measure of fluctuations

Yield ratio correlations in Hadron Resonance Gas models

equilibrated Hadron Resonance Gas

at the chemical freeze-out stage

 μ_B , μ_O , μ_S – chemical potentials

Thermal model:

T – temperature

V – system volume

Parameters:

6

 $\pi^{\Delta} \pi$

Thermal-FIST package

Vovchenko, Stoecker, Comput. Phys. Commun. 244, 295 (2019)

→ Run in Monte Carlo mode (HRG + radial flow + decays) for *Canonical* and *Grand-Canonical* Ensembles:

Backward

 $v_{FB} =$

Forward

What with realistic models of pp and A-A collisions?

Calculations are done in HIJING (Pb-Pb) and PYTHIA (pp) collisions at LHC energies.

- Near-side peak for opposite-sign, while nearly zero for same-sign correlations
- Consistent results between HIJING and PYTHIA (thanks to stability to Vol.Fluct.!)
- Both generators are based on Lund string fragmentation \rightarrow binomial sampling along η , ~GCE

*plots by V. Petrov

What with realistic models of pp and A-A collisions?

Similar results for azimuthal intervals

*plots by V. Petrov

 ϕ_{sep}

What with realistic models of pp and A-A collisions?

Calculations are done in HIJING (Pb-Pb) and PYTHIA (pp) collisions at LHC energies.

• Centrality (multiplicity) dependence:

- HIJING: similar values in all classes due to absence of collective effects
- PYTHIA: slight dependence, probably due to Color Reconnection

Summary

- Event-by-event measurements help to characterize the properties of the "bulk" of the system, they also are closely related to dynamics of the phase transitions.
- Challenges from the experimental point of view:
 - o fluctuations of the volume of the created system
 - o corrections on efficiency and contamination, limited acceptance
 - o difficult to interpret the data due to resonance decays, conservation laws
- Angular correlations between ratios of identified particle yields in two windows were discussed
 - robust observable, allows to suppress contributions from SRC
 - v_{FB} allows one to separate short-range effects from global fluctuation patterns caused by canonical suppression, etc.
 - experimental studies to be done

Thank you for your attention!

I.Altsybeev, V.Petrov, Angular correlations of particle yield ratios

This work is supported by the Russian Science Foundation, grant 17-72-20045.