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Angular correlations of particle yield ratios



Many “event-averaged” observables can be studied: particle yields, spectra, flow harmonics…

Event-by-event measurements:
the fluctuations are studied over the ensemble of the events.
§ fluctuating net-charge, number of protons, mean pT, forward-backward yields, etc.

In central Pb-Pb collisions at LHC energies, ~2000 particles within|η|<0.5.

Why e-by-e fluctuations:
§ they help to characterize the properties of the “bulk” of the system
§ fluctuations also are closely related to dynamics of the phase transitions

1 Intro: observables for heavy-ion collision studies
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More differentially,  one can study correlations, e.g. in emission angles



Landscape of integral and differential observables1
C. A. Pruneau, “Data Analysis Techniques for Physical Scientists” (2017)
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Physics picture: charge diffusion in the medium 
Affected by: radial flow, resonance decays, HBT, Coulomb effects

etc.

à STAR and ALICE reveal narrowing of BF with centrality:

more central events

J. Pan, QM2018, arxiv:1807.10377

2 Differential correlations between + – charges (Balance Functions)

Bass et al., Phys. Rev. Lett. 85 (2000) 2689

cartoon by M.Janik
∆y  
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Phys. Rev. C 101, 014916 (2020)

This normalization removes sensitivity to E-by-E fluctuations
à R2 is identically zero in the absence of any two-particle 

correlations

Differential angular correlations: typical definitions2

/

Eur. Phys. J. C77 (2017) 569

ALICE pp
ALICE:

STAR

depletion

depletion

STAR:
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“angular” part

Figures: note anti-correlation of same-sign baryons at small angular separations



Single η-window
§ measures deviations from Poissonian behaviour
§ robust against volume fluctuations, efficiency losses
§ sensitive to correlations between species a, b
§ affected by resonance decays

3
Integrated observable (approximation):

Pruneau, Voloshin, Gavin, Phys.Rev. C66 (2002) 044904
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a b

Variance of the ratio (norm.):

– ratio of yields

Integrated observable: particle number fluctuations 



Integrated observable: particle number fluctuations 

Single η-window
§ measures deviations from Poissonian behaviour
§ robust against volume fluctuations, efficiency losses
§ sensitive to correlations between species a, b
§ affected by resonance decays

3
Integrated observable (approximation):

Pruneau, Voloshin, Gavin, Phys.Rev. C66 (2002) 044904
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a b

Variance of the ratio (norm.):

ALICE, EPJ C79 (2019) 236

Observations:
• νdyn[π,p]: increasing correlation with decreasing centrality
• νdyn[π,K]: increasing anti-correlation between π and K or

increasing dynamical fluctuations with increasing centrality
• Models fail to describe data

– ratio of yields



§ robust against volume fluctuations, efficiency losses

Differential correlations between ratios of particle yields

Single η-window

4
Integrated observable (approximation):

Pruneau, Voloshin, Gavin, Phys.Rev. C66 (2002) 044904
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a b

a b a b

Two η-windows

§ keeps good properties of νdyn

§ if independent particle production à νFB = 0  
§ if only short-range effects (decays, jets) 

à at large ηgap νFB = 0 
– not the case for the “classical” νdyn

Differential observable (approximation):

Correlation strength: “same-species” terms “cross-species” terms

B F

I.A., EPJ Web of Conf. 204, 2019 
arXiv:1901.01635

– ratio of yields

Examples: 
• kaon-to-pion ratio r = nK / nπ
• baryon-to-pion ratio r = nproton / nπ

Physics cases of interest:
• correlations between strangeness or

baryon production at large η gaps 
(string interactions, thermal models, ...)



centrality class width 10%

§ Good agreement between direct calculations and the approximation

Angular correlations between yield ratios: check approximation4

K/π – K/π
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EPJ Web of Conf. 204, 2019 

π
K

π
K



It can be shown that in an independent sources model:

Observables of this type are robust to 
Volume and Volume Fluctuations

A convenient to rescale:

(as for νdyn)

Volume Fluctuations: when system size changes E-by-E 
(e.g. due impact parameter fluctuations)

a system of independent sources / subsystems
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EPJ Web of Conf. 204, 2019 

Angular correlations between yield ratios: check robustness to VF4

K/π – K/π

π
K

π
K

centrality class width:
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Toy model for yield ratio correlations
Assumptions:
§ number of positive particles in each event is from Gauss, <N>=80, σ=4
§ particles are distributed within |η|<2
§ for each positive particle there is one negative (charge conservation)

Then particle ID is assigned, and we can simulate
§ a binomial distribution of K+ (others are pions) à GCE
§ … or assign a strictly fixed fraction of K+ à CE

FB
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Toy model for yield ratio correlations
Assumptions:
§ number of positive particles in each event is from Gauss, <N>=80, σ=4
§ particles are distributed within |η|<2
§ for each positive particle there is one negative (charge conservation)

Then particle ID is assigned, and we can simulate
§ a binomial distribution of K+ (others are pions) à GCE
§ … or assign a strictly fixed fraction of K+ à CE

Grand Canonical ensemble for K+:

FB

K+/π+ – K+/π+

K+/π+ – K–/π–
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Toy model for yield ratio correlations
Assumptions:
§ number of positive particles in each event is from Gauss, <N>=80, σ=4
§ particles are distributed within |η|<2
§ for each positive particle there is one negative (charge conservation)

Then particle ID is assigned, and we can simulate
§ a binomial distribution of K+ (others are pions) à GCE
§ … or assign a strictly fixed fraction of K+ à CE

Grand Canonical ensemble for K+:

FB

positive impact from
charge conservation

zero for same-sign 
particles

K+/π+ – K+/π+

K+/π+ – K–/π–
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Toy model for yield ratio correlations
Assumptions:
§ number of positive particles in each event is from Gauss, <N>=80, σ=4
§ particles are distributed within |η|<2
§ for each positive particle there is one negative (charge conservation)

Then particle ID is assigned, and we can simulate
§ a binomial distribution of K+ (others are pions) à GCE
§ … or assign a strictly fixed fraction of K+ à CE

Grand Canonical ensemble for K+:

close to zero just by a coincidence 

FB

positive impact from
charge conservation

zero for same-sign 
particles

negative
(correlations suppressed)

K+/π+ – K+/π+

K+/π+ – K–/π–

Canonical ensemble for K+:



Y
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Toy model for yield ratio correlations
Assumptions:
§ number of positive particles in each event is from Gauss, <N>=80, σ=4
§ particles are distributed within |η|<2
§ for each positive particle there is one negative (charge conservation)

Then particle ID is assigned, and we can simulate
§ a binomial distribution of K+ (others are pions) à GCE
§ … or assign a strictly fixed fraction of K+ à CE

Grand Canonical ensemble for K+: Canonical ensemble for K+:

short-range (+,–)  
correlations added

5
FB
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Toy model for yield ratio correlations5
Assumptions:
§ number of positive particles in each event is from Gauss, <N>=80, σ=4
§ particles are distributed within |η|<2
§ for each positive particle there is one negative (charge conservation)

Then particle ID is assigned, and we can simulate
§ a binomial distribution of K+ (others are pions) à GCE
§ … or assign a strictly fixed fraction of K+ à CE

Grand Canonical ensemble for K+: Canonical ensemble for K+:

short-range (+,–)  
correlations added

Y

FB

some same-sign (+,+)  
pairs ”repulse"
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Toy model for yield ratio correlations5
Assumptions:
§ number of positive particles in each event is from Gauss, <N>=80, σ=4
§ particles are distributed within |η|<2
§ for each positive particle there is one negative (charge conservation)

Then particle ID is assigned, and we can simulate
§ a binomial distribution of K+ (others are pions) à GCE
§ … or assign a strictly fixed fraction of K+ à CE

Grand Canonical ensemble for K+: Canonical ensemble for K+:

short-range (+,–)  
correlations added

some same-sign (+,+)  
pairs ”repulse"

Y

FB

recall:
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Toy model for yield ratio correlations5
Assumptions:
§ number of positive particles in each event is from Gauss, <N>=80, σ=4
§ particles are distributed within |η|<2
§ for each positive particle there is one negative (charge conservation)

Then particle ID is assigned, and we can simulate
§ a binomial distribution of K+ (others are pions) à GCE
§ … or assign a strictly fixed fraction of K+ à CE

Grand Canonical ensemble for K+: Canonical ensemble for K+:

short-range (+,–)  
correlations added

Y

FB

à νFB allows one to separate short-range 
effects from “global” fluctuations

some same-sign (+,+)  
pairs ”repulse"



§ Remove short-range effects, leave only “global” scenarios:

Yield ratio correlations as a measure of fluctuations5
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K+/π+ – K+/π+

suppression for Canonical Ensemble

Nucl. Phys. B 390 542–558 (1993)

raise in String Fusion-like models
(when strange particle yield depends on 
source density fluctuates e-by-e)

π
K

π
K

à νFB allows one to separate short-range 
effects from “global” fluctuations
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Yield ratio correlations in Hadron Resonance Gas models6

correlations of K+/π+ correlations of p/π+

π
K

π

à Run in Monte Carlo mode (HRG + radial flow + decays) for Canonical and Grand-Canonical Ensembles:

K

Vovchenko, Stoecker, Comput. Phys. 
Commun. 244, 295 (2019)

Source code

Thermal model:
equilibrated Hadron Resonance Gas 
at the chemical freeze-out stage 
Parameters:
T – temperature
𝜇𝐵, 𝜇𝑄, 𝜇𝑆 – chemical potentials
V – system volumeThermal-FIST package

à The pattern of suppression of νFB for the Canonical Ensemble
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https://github.com/vlvovch/Thermal-FIST
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What with realistic models of pp and A-A collisions?7

correlations of K/π correlations of p/π

§ Near-side peak for opposite-sign, while nearly zero for same-sign correlations
§ Consistent results between HIJING and PYTHIA (thanks to stability to Vol.Fluct.!)
§ Both generators are based on Lund string fragmentation à binomial sampling along η, ~GCE

K–/π– – K–/π–

K+/π+ – K–/π–

Calculations are done in HIJING (Pb-Pb) and 
PYTHIA (pp) collisions at LHC energies.
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*plots by V. Petrov



What with realistic models of pp and A-A collisions?7
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*plots by V. Petrov

correlations of K/π correlations of p/π

§ Similar results for azimuthal intervals

Calculations are done in HIJING (Pb-Pb) and 
PYTHIA (pp) collisions at LHC energies.
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What with realistic models of pp and A-A collisions?7
Calculations are done in HIJING (Pb-Pb) and 
PYTHIA (pp) collisions at LHC energies.
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§ Centrality (multiplicity) dependence: 
§ HIJING: similar values in all classes due to absence of collective effects
§ PYTHIA: slight dependence, probably due to Color Reconnection

*plots by V. Petrov



Thank you for your attention!

Summary

§ Event-by-event measurements help to characterize the properties of the “bulk” of the system, 
they also are closely related to dynamics of the phase transitions.

§ Challenges from the experimental point of view:
o fluctuations of the volume of the created system
o corrections on efficiency and contamination, limited acceptance
o difficult to interpret the data due to resonance decays, conservation laws

§ Angular correlations between ratios of identified particle yields in two windows were discussed
o robust observable, allows to suppress contributions from SRC
o νFB allows one to separate short-range effects from global fluctuation patterns caused by 

canonical suppression, etc. 
o experimental studies – to be done
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