Feasibility studies of tau-lepton anomalous magnetic moment measurements with ultra-peripheral collisions at the LHC

Nazar Burmasov¹, Evgeny Kryshen¹, Paul Buehler², Roman Lavicka²

¹NRC «Kurchatov Institute» - PNPI ²Stefan Meyer Institute for Subatomic Physics

LXXI International conference "NUCLEUS – 2021" 22.09.2021

Anomalous magnetic moments

Relation between magnetic moment and spin vectors:

$$ec{\mu}_{
m S} \ = \ g \, rac{q}{2m} \, ec{S}$$

Dirac magnetic moment corresponds to tree level:

$$g = 2$$

 Anomalous magnetic moments a_I appear due to loop corrections

$$a = \frac{g-2}{2}$$

- Electron anomalous magnetic moment is the most accurate verified QED prediction: 10⁻⁹ precision
- Muon anomalous magnetic moment represents one of the long-standing discrepancies in SM: 4.2σ tension
- Anomalous magnetic moments of leptons are sensitive to BSM physics, e.g. composite structure of leptons or SUSY particles

Theory: $a_e = 0.001 \ 159 \ 652 \ 181 \ 643(764)$

Experiment: $a_e = 0.001\ 159\ 652\ 180\ 73(28)$

Theory: $a_{\mu}^{\mathrm{SM}} = 0.001\ 165\ 918\ 04(51)$

Experiment: $a_{\mu} = 0.001~165~920~61(41)$

Tau anomalous magnetic moment

- Supersymmetry at a scale ${\rm M_S}$ leads to $\delta a_\ell \sim m_\ell^2/M_{
 m S}^2$
 - \blacksquare t is ~280 times more sensitive to BSM than μ
- Very short tau lifetime (10^{-13} s) \rightarrow standard spin precession methods used in muon g-2 experiments are not applicable
- Workaround: τ production cross sections are sensitive to a_τ
 - Strongest constraints by DELPHI were set with $\,e^+e^-\,
 ightarrow\,e^+e^- au au$

Theory:
$$a_{\tau}^{\text{SM}} = 0.00117721(5)$$

Experiment:
$$-0.052 < a_{\tau} < 0.013 (95\% CL)$$

EPJC 35 (2004) 159

Dyndal et al., PLB 809 (2020) 135682

Ultra-peripheral collissions

• $b > R_a + R_b$:

Hadronic interactions are strongly suppressed

- Heavy ions produce strong electromagnetic field
- Treated as a strong photon flux
 - Described in terms of Weizsäcker-Williams formalism
 - Proportional to Z²
 - High cross section in γ -induced interactions

Tau decays

1-prong: tau decays into 1 charged particle with BR ~ 80%:

$$BR(\tau^{\pm} \to e^{\pm} + \nu_{e} + \nu_{\tau}) = 17.8\%$$

$$BR(\tau^{\pm} \to \mu^{\pm} + \nu_{\mu} + \nu_{\tau}) = 17.4\%$$

$$BR(\tau^{\pm} \to \pi^{\pm} + n\pi^{0} + \nu_{\tau}) = 45.6\%$$

• 3-prong: $\mathcal{B}(\tau^{\pm} \to \pi^{\pm}\pi^{\mp}\pi^{\pm}\nu_{\tau} + \text{neutral pions}) = 19.4\%.$

Selection in UPCs:

 $\tau\tau \rightarrow 1$ lepton + 1 charged particle

 $\tau\tau \rightarrow 1$ lepton + 3 charged particles

Tau decays in ATLAS/CMS

Studied by two groups:

- Beresford et al., PRD 102 (2020) 113008
- Dyndal et al., PLB 809 (2020) 135682

Trigger and reconstruction thresholds

- ATLAS:
 - Well-suited for electron+track channel
 - $|\eta| < 2.5$
 - $p_T > 4.5 \text{ GeV}$
- CMS
 - Better for muon+track channel
 - $|\eta| < 2.4$
 - p_T > 3 GeV
- All charged-particle tracks: p_T > 0.5 GeV

Lepton p_T spectra and background mitigation

p_T differential measurements provide better sensitivity

Acoplanarity cuts can be used to suppress continuum dilepton background

Possible constraints on a_T with ATLAS/CMS

- Run 2 (2/nb) statistics estimates for ATLAS/CMS: 1280 events with 1-prong selection
- Looser limits predicted by Dyndal et al.
- Measurements may be limited by systematics

Possibilities with ALICE

- Relatively weak 0.5 T solenoid magnetic field \rightarrow charged particles can be measured down to $p_T \sim 0.15$ GeV
- Charged-particle tracking within $|\eta| < 1$
- Event sample is dominated by low- $p_T \rightarrow$ leptons need to conduct a dedicated calculation to study sensitivity to a_τ at low transverse momenta

p_T-differential electron yields for arbitrary a_T

Following Dyndal et al., developed a dedicated UPC generator of tau pairs with arbitrary a_{τ} using generalized vertex:

$$i\Gamma^{\mu}(q) = -ie\left(\gamma^{\mu}F_1(q^2) + \frac{i}{2m}\sigma_{\mu\nu}q^{\nu}F_2(q^2)\right) \to -ie\left(\gamma^{\mu} + \frac{i}{2m}\sigma_{\mu\nu}q^{\nu}a_{\tau}\right)$$

UPC cross section:

$$\frac{\mathrm{d}\sigma(\mathrm{PbPb}\to\mathrm{PbPb}+\tau\tau)}{\mathrm{d}Y\mathrm{d}M} = \frac{\mathrm{d}N_{\gamma\gamma}}{\mathrm{d}Y\mathrm{d}M}\sigma\big(\gamma\gamma\to\tau\tau,\omega_{1,2} = \frac{M}{2}e^{\pm Y}\big) \qquad \frac{\mathrm{d}N_{\gamma\gamma}}{\mathrm{d}Y\mathrm{d}M} \text{ - two-photon luminosity in UPC}$$

Pb-Pb, 5 TeV, 2.7 nb⁻¹

- Using Pythia8 for tau decays
- Looking into 1 electron + 1 pion/muon events
- Fiducial cuts:
 - |η|<1</p>
 - $p_{\tau} > 0.3 \text{ GeV/c}$
- Nontrivial dependence on a₊:

low p_T^e : yields for $a_T = -0.1$ are below SM yields high $p_T^e > 3$ GeV: yields for $a_T = +0.1$ are above SM yields

p_⊤ differential measurements provide better sensitivity

Closer look: sensitivity to a_{τ} in p_{τ} bins

- Considering 3 p_T bins that provide 1% statistical uncertainty
- Ratio of electron p_T differential cross sections has a parabolic shape in the vicinity of $a_T = 0$
- Up to 15% variations of the yields within the range restricted by DELPHI limits

Possible a_T limits with ALICE in Run 3

Deviation from SM

$$\chi^{2} = \sum_{i=1}^{N_{\text{bins}}} \frac{[S_{i}(0) - S_{i}(a_{\tau})]^{2}}{\sigma_{\text{stat}}^{2} + (\sigma_{\text{syst}}^{\text{uncorr}})^{2}}$$

$$S_{i} \qquad (\zeta S_{i})^{2}$$

- Considering uncorrelated systematic uncertainties: $\zeta = 1\%$, 3%, 5%
- Precision limited by systematics

Caveats and future steps

- Higher-order corrections
 - Multiple interactions due to high Zα,
 e.g. Hencken et al. PRC 75 (2007) 034903
 - Radiation from final state particles,
 e.g. S. Klein et al. PRD 102 (2020) 094013
- Precision of the equivalent photon approximation
 - Need to study flux uncertainties due to variation of Pb shape parameters
- Try ratios to electron/muon spectra to reduce systematics, proposed by Dyndal et al. PLB 809 (2020) 135682

Ratio to electron/muon spectra

Flux differences in Starlight/Dyndal

Final state radiation

Conclusions

- Possibilities for a_τ measurements with LHC experiments in Run 3 and 4 look promising
- Precision is limited by systematic uncertainties
- Expected limits on a_τ x2 better compared to DELPHI results

BACKUP

Idea to measure a, in UPC

F. del Aguila, F. Cornet, J.I.Illana, PLB 271 (1991) 256

$$\chi^2 = \sum_{i} \frac{[N_i(F_{2(3)}) - N_i(0)]^2}{N_i(F_{2(3)})}$$

- Considering taus in the final state
- Systematic uncertainties ignored

- L. Beresford, J. Liu, PRD 102 (2020) 113008
 - Calculations withing SM effective field theory (SMEFT)
 - Tau decays into leptons

Tau decays into leptons
$$\chi^2 = \frac{(S_{\text{SM}+\text{BSM}} - S_{\text{SM}})^2}{B + S_{\text{SM}+\text{BSM}} + (\zeta_s S_{\text{SM}+\text{BSM}})^2 + (\zeta_b B)^2}$$

- M. Dyndal, M. Klusek-Gawenda, M. Schott, A. Szczurek, PLB 809 (2020) 135682
 - Direct calculations with generalized form of the γττ vertex:

$$i\Gamma_{\mu}^{\gamma\tau\tau}(q) = -ie \left[\gamma_{\mu} F_1(q^2) + \frac{i}{2m_{\tau}} \sigma_{\mu\nu} q^{\nu} F_2(q^2) + \frac{1}{2m_{\tau}} \gamma^5 \sigma_{\mu\nu} q^{\nu} F_3(q^2) \right] \qquad a_{\tau} = F_2(0)$$

Ideas to reduce systematics using ratios to dimuon/dielectron continuum production

Cross section calculation for arbitrary a_{τ}

• Following Dyndal et. al.:

$$\frac{d\sigma(\gamma\gamma\to\ell^+\ell^-)}{dz} = \frac{2\pi}{64\pi^2s} \frac{|p_{out}|}{|p_{in}|} \frac{1}{4} \sum_{\text{spin}} |\mathcal{M}|^2 \qquad z = \cos\theta$$

• Amplitude:

Amplitude.
$$\mathcal{M} = (-i)\epsilon_{1\mu}\epsilon_{2\nu}\bar{u}(p_3) \left(i\Gamma^{\mu}(p_1)\frac{i(\hat{p}_t + m)}{p_t^2 - m^2 + i\epsilon}i\Gamma^{\nu}(p_2) + i\Gamma^{\nu}(p_2)\frac{i(\hat{p}_u + m)}{p_u^2 - m^2 + i\epsilon}i\Gamma^{\mu}(p_1)\right)v(p_4)$$

Generalized vertex:

$$i\Gamma^{\mu}(q) = -ie\left(\gamma^{\mu}F_1(q^2) + \frac{i}{2m}\sigma_{\mu\nu}q^{\nu}F_2(q^2)\right) \to -ie\left(\gamma^{\mu} + \frac{i}{2m}\sigma_{\mu\nu}q^{\nu}a_{\tau}\right) \qquad a_{\tau} = F_2(0)$$

SM cross section at tree level:

$$\frac{d\sigma}{dz} = \frac{\pi\alpha^2}{s} \frac{\sqrt{k^2 - m^2}}{k} \left(2 + 4x \frac{x(1 - z^2)z^2 + 1 - x}{(1 - xz^2)^2} \right) \qquad x = \frac{k^2 - m^2}{k^2} \qquad s = 4k^2$$

- In general: 4^{th} order polynomial in a_{τ} (calculated with Mathematica package)
- UPC cross section:

$$\frac{\mathrm{d}\sigma(\mathrm{PbPb}\to\mathrm{PbPb}+\tau\tau)}{\mathrm{d}Y\mathrm{d}M} = \frac{\mathrm{d}N_{\gamma\gamma}}{\mathrm{d}Y\mathrm{d}M}\sigma\big(\gamma\gamma\to\tau\tau,\omega_{1,2} = \frac{M}{2}e^{\pm Y}\big) \qquad \qquad \frac{\mathrm{d}N_{\gamma\gamma}}{\mathrm{d}Y\mathrm{d}M} \quad \text{- two-photon luminosity in UPC}$$

Using TPythia8Decayer for tau decays