OVERVIEW ON HEAVY-FLAVOUR RESULTS FROM THE ALICE EXPERIMENT

Fabio Colamaria, for the ALICE Collaboration

WHAT DOES ALICE STUDY? THE QGP

Goal: study the properties of nuclear matter at extreme conditions of temperature and energy density

- Deconfined state of matter: quark-gluon plasma (QGP)
- From lattice QCD: $T_{\rm C} \sim 150 \, {\rm MeV} \, {\rm and} \, \varepsilon_{\rm C} \sim 0.5 \, {\rm GeV/fm^3}$

A QGP state can be produced (for few fm/c) in ultrarelativistic heavy-ion collisions

THE IMPORTANCE OF HEAVY-FLAVOURS

In Pb-Pb collisions

- Charm and beauty experience the whole evolution of the collision
 - > QGP tomography by studying final-state HF particles
- Characterise partonic energy loss due to interactions with QGP constituents
- Do heavy quarks participate to QGP collective motion?
- Investigate **coalescence vs fragmentation** mechanisms for hadron formation

In pp collisions

- Probe perturbative QCD calculations for heavy-quark production
 - ➤ Heavy quarks produced in **hard-parton scatterings** with large $Q^2 \rightarrow pQCD$ can be used
- Study heavy-quark hadronisation mechanisms
- Reference for Pb-Pb measurements

Also in highmultiplicity pp!

In p-Pb collisions

- Investigate impact of cold-nuclear-matter effects on observables studied in Pb-Pb
- Study possible final-state energy loss and formation of QGP in high-multiplicity events

2

F. Colamaria – NUCLEUS 2021

24/09/2021

THE ALICE EXPERIMEN

A multi-purpose experiment at the LHC, with focus on heavy-ion studies, excellent PID capabilities and tracking down to ≈100 MeV/c

Inner Tracking System (ITS)

Time-Of-Flight detector (TOF)

$$\begin{array}{c} \begin{array}{c} D^0 \rightarrow K^-\pi^+ \\ D^+ \rightarrow K^-\pi^+\pi^+ \\ D^{*+} \rightarrow D^0\pi^+ \\ D_s^+ \rightarrow \phi\pi^+ \rightarrow K^-\pi^+\pi^+ \\ J/\psi \rightarrow e^-e^+ \\ J/\psi, \psi(2S) \rightarrow \mu^-\mu^+ \\ \Upsilon(1S,2S,3S) \rightarrow \mu^-\mu^+ \\ D \rightarrow e(\mu)X \\ B \rightarrow e(\mu)X \end{array}$$

$$\begin{cases} \Lambda_c^+ \to K_S^0 p \\ \Lambda_c^+ \to \pi^+ K^- p \\ \Xi_c^0 \to \Xi^- e^+ \nu_e \\ \Xi_c^0 \to \Xi^- \pi^+ \\ \Xi_c^+ \to \Xi^- \pi^+ \pi^+ \\ \Omega_c^0 \to \Omega^- \pi^+ \\ \Sigma_c^{0,++} \to \Lambda_c^+ \pi^{-,+} \end{cases}$$

pp collisions

D-MESON PRODUCTION IN pp COLLISIONS

- Cross section of prompt and non-prompt D mesons measured with excellent precision down to $p_T = 0$ (for D⁰, D⁺)
- Comparison with perturbative QCD calculations (FONLL and GM-VFNS) which assume universal fragmentation functions across collision systems
 - Good description of the measurement for D mesons

ALICE, JHEP 05 (2021) 220 FONLL: JHEP 1210 (2012) 137

Λ_c⁺ PRODUCTION IN pp COLLISIONS

Very different picture for charm baryons!

ALICE: arXiv:2011.06079 GM-VFNS: EPJ C72 (2012) 2082 POWHEG: JHEP 09 (2007) 126 PYTHIA6: JHEP 05 (2006) 026 PYTHIA8: arXiv:0710.3820

- Severe underestimation of Λ_c^+ production cross section by pQCD calculations (GM-VFNS), and models/generators based on standard fragmentation (POWHEG+PYTHIA6, PYTHIA8 Monash)
- Proper description needs specific mechanisms to enhance baryon production in pp collisions

Λ_c⁺ PRODUCTION IN pp COLLISIONS

ALICE. arXiv:2011.06078 ALICE, arXiv:2011.06079 ALICE, arXiv:2106.08278 PYTHIA8+CR: JHEP 08 (2015) 003 SHM+RQM: PLB 795 (2019) 117-121 Catania: arXiv:2012.12001 QCM: EPJ C78 no. 4 (2018) 344

Large disagreement of Λ_c^+/D^0 ratios in pp collisions w.r.t. PYTHIA8 Monash

- Enhanced Λ_c production, in particular at low p_{T}
- PYTHIA8 Monash FF based on data from e⁺e⁻ collisions

Better description by models with baryon production enhancement mechanisms:

- Color reconnection beyond leadingcolour approximation
 - → PYTHIA8 CR-BIC
- Statistical hadronisation with enlarged set of excited charm baryons
 - → SHM+ROM
- Λ_c^+ hadronisation via recombination mechanism
 - → Catania (w/ fragmentation)
 - → QCM

CHARM BARYONS IN pp COLLISIONS

 Ξ_{c}^{+} quark content:

 Ω_c^{0} quark content:

For $\Xi_c^{0,+}/D^0$ ratios, only Catania gets close to data

Both coalescence and fragmentation mechanisms in pp?

All models underestimate Ω_c^0/D^0 production cross section ratios

- PYTHIA8 Monash off by orders of magnitude
- Catania gives again the closest description, though still below data

CHARM FRAGMENTATION FRACTIONS

Compared to e⁺e⁻ / e⁻p collisions;

- Increased contribution of $\approx x3$ for Λ_c
- Decreased production by $\approx x1.4$ for D mesons First measurement of Ξ_c^0 fragmentation fractions

ALICE, arXiv:2105.06335

HERA: EPJC 76 no. 7 (2016) 397 √s=5.02 TeV

LEP: EPJC 76 no. 7 (2016) 397

B factories: EPJC 76 no. 7 (2016) 397

- For pp collisions, important contribution of charm baryons to total charm cross section
- Charm fragmentation is not universal!

CHARM AND BEAUTY PRODUCTION CROSS SECTION

• $c\bar{c}$ production cross section at midrapidity at $\sqrt{s} = 5.02$ TeV:

$$(d\sigma^{c\overline{c}}/dy)_{|y|<0.5}$$
 = 1165± 44(stat.)⁺¹³⁴₋₁₀₁ (syst) µb

- Re-evaluation of cross section at $\sqrt{s} = 7$ and 2.76 TeV ($\approx +40\%$)
- Data on upper edge of FONLL and NNLO calculation

• $b\bar{b}$ production cross section at midrapidity at $\sqrt{s} = 5.02$ TeV:

$$(d\sigma^{b\overline{b}}/dy)_{|y|<0.5}$$
 = 34.5 ± 2.4 (stat.) $^{+4.6}_{-2.9}$ (tot. syst.) µb

- From non-prompt D-meson measurements
- Good description by FONLL and NNLO calculations over a wide range of energy

ALICE: arXiv:2105.06335, JHEP 05 (2021) 220, JHEP 11 (2015) 065, PLB 721 (2013) 13-23, PRC 102 (2020) 5, 055204; PHENIX: PRC 84 044905 (2011), PRL 103 082002 (2009); STAR: PRD 86 (2012) 072013; CDF: PRD 71 032001 (2005); UA1: PLB 256 (1991) 121

C

Pb-Pb collisions

SPECIFIC OBSERVABLES FOR PROBING THE QGP

• The nuclear modification factor R_{AA} quantifies modifications to particle production yields induced by QGP effects on the traversing partons, for a given collision centrality:

$$R_{\rm AA}(p_{\rm T}) = \frac{1}{\langle N_{\rm coll} \rangle} \cdot \frac{{\rm d}N_{\rm AA}(p_{\rm T})/{\rm d}p_{\rm T}}{{\rm d}N_{\rm pp}(p_{\rm T})/{\rm d}p_i} \qquad \qquad \begin{array}{c} \text{Central collision} \\ \end{array}$$

- At high p_T :
 - $ightharpoonup R_{AA} = 1$ in case of binary scaling
 - R_{AA} < 1: partonic energy loss and/or cold-nuclear-matter effects
- Hydrodynamic treatment describes well the QGP evolution
- Non-central collisions: initial spatial anisotropy of the overlapping region translates into momentum anisotropy:
- Anisotropy quantified by a Fourier decomposition of the azimuthal distribution, w.r.t. reaction plane $\rightarrow v_n$ coefficients

$$\frac{\mathrm{d}N}{\mathrm{d}\varphi} = \frac{N_0}{2\pi} \left\{ 1 + 2 \sum_{n=1}^{\infty} v_n \left(p_\mathrm{T} \right) \cos \left[n \left(\varphi - \Psi_\mathrm{RP} \right) \right] \right\}$$

$$v_2: \text{ sensitive to collision initial geometry}$$

$$v_n = \left\langle \cos \left[n \left(\varphi - \Psi_\mathrm{RP} \right) \right] \right\rangle$$

$$v_3, v_4, \dots: \text{ sensitive to event-by-event fluction}$$

 $\mathbf{v_3}$, $\mathbf{v_4}$, ...: sensitive to event-by-event fluctuations

10

F. Colamaria – NUCLEUS 2021

24/09/2021

PROMPT D-MESON R_{AA}

- Prompt D mesons strongly suppressed in central Pb-Pb collisions
 - ➤ Factor ≈5.5 at 6-10 GeV/c
- Best description by models with radiative and collisional energy loss + quark recombination
 - Set constraints on models describing in-medium interactions of heavy quarks

BAMPS: J. Phys. G: Nucl. Part. Phys. 42 115106

POWLANG: EPJ C 75, 121 (2015) LIDO: Phys. Rev. C 98 (2018) 064901

PHSD: T. Song et al. PRC 92 014910 (2015)

TAMU: M. He et al. PLB 735 445-450 (2014)

Catania: EPJC 78, 348 (2018)

MC@sHQ: Phys. Rev. C 89, 014905 (2014)

PROMPT D-MESON R_{AA} (STRANGE VS NON-STRANGE)

- Hint of smaller suppression for D_s^+ compared to non-strange D mesons for $p_T < 8 \text{ GeV}/c$
- Explained due to strangeness enhancement in QGP + hadronization via recombination
- Hierarchy is well described by models including hadron formation via recombination

PHSD: T. Song et al. PRC 92 014910 (2015) TAMU: M. He et al. PLB 735 445-450 (2014) Catania: S. Plumari et al. EPJC 78 348 (2018)

NON-PROMPT D-MESON RAA

- Decreased suppression for non-prompt D⁰ compared to prompt D⁰
 - \triangleright $\Delta E(b) < \Delta E(c)$ from dead-cone effect (gluon radiation vetoed for $\theta < m/E$)
 - ightharpoonup Translates into $R_{AA}(H_b \rightarrow D^0) > R_{AA}(c \rightarrow D^0)$
- Double ratio of non-prompt/prompt D⁰ R_{AA} well described by most of the transport models

NON-PROMPT D_s+-MESON R_{AA}

- First measurement of non-prompt D_s + mesons in central Pb-Pb collisions
- At low p_T , hint of reduced suppression w.r.t. prompt D_s^+ and non-prompt D^0 mesons
- TAMU model (collisional energy loss + recombination) describes well the difference of R_{AA} , though generally overestimating their absolute values

HF ELLIPTIC FLOW COEFFICIENTS

- Positive v_2 of prompt D mesons
 - Participation of charm quarks to collective motion of QGP medium
- Similar strength of elliptic flow for strange and non-strange D mesons
- TAMU and PHSD transport models describe well the measurements
 - Both models include charm + strange quark coalescence for D_s⁺ formation

ALICE, Phys. Lett. B 813 (2021) 136054 PHSD: T. Song et al. PRC 92 014910 (2015) TAMU: M. He et al. PLB 735 445-450 (2014)

HF ELLIPTIC FLOW COEFFICIENTS

- v_2 coefficient ordering: $v_2(\pi^{+/-}) > v_2(D) > v_2(J/\psi)$, points toward larger flow for light quarks rather than for charm
- Beauty sector: smaller v_2 for beauty-hadron decay electrons, and no flow for Y(1S) state
- TAMU model describes well the data, except for J/ψ above 4 GeV/c
- High-precision measurements allow for setting constraints to models for charm diffusion coefficient:
 - $> 1.5 < 2\pi T_c D_s < 7 \text{ for } T_c = 155 \text{ MeV}$

ALICE, Phys. Lett. B 813 (2021) 136054 ALICE, JHEP 09 (2018) 006 ALICE, JHEP 10 (2020) 141 ALICE, Phys. Rev. Lett. 126 (2021) 162001 TAMU: M. He et al. PLB 735 445-450 (2014)

p-Pb collisions

HEAVY-FLAVOUR ENERGY LOSS IN p-Pb

- D-meson R_{pPb} consistent with 1, described by models with only initial-state effects
 - $Q_{CP} > 1$ points toward possible radial-flow 'push' of D-meson spectra in HM p-Pb
- New Λ_c^+ measurement down to 0 in p-Pb!
- $R_{\rm pPb}$ of $\Lambda_{\rm c}^+$ larger than unity for $4 < p_{\rm T} < 8~{\rm GeV}/c$
 - > Potentially also from radial flow in p-Pb? Possible effect of recombination?

HEAVY-FLAVOUR ELLIPTIC FLOW IN p-Pb

- Measurements of **positive** v_2 for heavy-flavour hadron decay muons and electrons in 0-20% multiplicity class!
- Consistent values for electrons and muons (but different η), smaller than charged particle v_2
 - \triangleright Caveat: different hadron \rightarrow parton p_T scale w.r.t. light-flavour particles + decay kinematics
- From collective motion in high-multiplicity p-Pb collisions due to final state effects (QGP droplet)? Or related to initial-state effects (e.g. gluon saturation)?

ALICE, PRL 122, 072301 (2019)

CONCLUSIONS

pp collisions

- Precise measurements of production cross section for several charm hadrons, total charm cross section and charm fragmentation fractions
- Measurements point toward non-universality of the FF

Pb-Pb collisions

- Strong suppression of open heavy-flavour particles in central Pb–Pb collisions
- Charm and beauty quarks participate to QGP **collective motion**, though possibly with less strength than light quarks

p-Pb collisions

- No evidence of energy loss in p-Pb collisions...
- ...But non-zero elliptic flow for heavy-flavour particles at high multiplicity + Q_{CP} > 1 for D mesons: puzzle still unsolved

Stay tuned!

 ALICE upgrade expected to dramatically improve the precision of heavy-flavour studies and allow for further, unexplored measurements!

BACKUP SLIDES

D MESON PRODUCTION IN pp COLLISIONS

- Strange over non-strange production ratios, for D mesons (prompt and non prompt)
- Well described by pQCD calculations

Λ_c⁺ IN pp VS OTHER EXPERIMENTS

- Combination with CMS measurements shows a clear p_T dependence
 - \triangleright Deviation w.r.t. e⁺e⁻ mainly at low p_T, at high p_T a similar value is reached
- Non-trivial trend of rapidity dependence of Λ_c^+/D^0 ratios (ALICE + LHCb)

ALICE, arXiv:2011.06078 ALICE, arXiv:2011.06079

Λ_c⁺ IN pp VS OTHER EXPERIMENTS

- Very similar situation for baryon-to-meson ratio in HF and LF sector!
 - Similar shape for p/π , similar shape+values for Λ/K_s^0
- Points toward similar modification of hadronisation in pp collisions

ALICE, arXiv:2011.06078 ALICE, arXiv:2011.06079

Λ_c⁺ IN pp VS MULTIPLICITY

- Multiplicity-differential measurements of Λ_c^+/D^0 in pp collisions at 13 TeV
- Increased enhancement of ratios w.r.t. of Pythia8 Monash at larger event multiplicities
 - But excess already present in lowestmultiplicity range
- Pythia8 with CR Mode2 describes better the data

ALI-PREL-336442

CHARM BARYONS IN pp COLLISIONS

Similar behaviour for the $\Sigma_c^{0,++}$ states

$$\Sigma_c^{\ 0}$$
 quark content: ddd c Σ_c^{++} quark content: u u c

- First measurement of $\Sigma_c^{0,++}$ in hadronic collisions
- Low-p_T enhancement of $\Sigma_c^{0,++}/D^0$ ratios w.r.t. PYTHIA8 Monash
- Proper description provided by PYTHIA8 CR-BLC, SHM+RQM, Catania, and QCM models, due to enhanced production of baryons
 - Also important to probe feed-down contribution to $\Lambda_c^+!$

ALICE, arXiv:2106.08278

PYTHIA8+CR: arXiv:1505.01681 SHM+RQM: PLB 795 (2019) 117-121

Catania: arXiv:2012.12001

QCM: EPJ C78 no. 4 (2018) 344

CHARM BARYONS IN pp - MODELS

PYTHIA + COLOR RECONNECTION (CR)

- Includes mechanism of string formation beyond leading-colour approximation
- Increased baryon production from junction connection topologies
 - Partons from different MPI and beam remnants can be connected
- New CR Modes in PYTHIA 8 largely enhance the baryon yield and describe Λ_c^+ and $\Sigma_c^{0,++}$ data

SHM MODEL

Hadronization process ruled by thermo-statistical weights depending on hadron masses at a universal hadronization temperature T_H

- Two configurations available:
 - > Including states only listed in PDG:
 - \rightarrow 5 $\Lambda_{c'}$ 3 $\Sigma_{c'}$ 8 $\Xi_{c'}$ 2 Ω_{c}
 - Including additional excited baryon states predicted by the Relativistic Quark Model (RQM), not yet observed:
 - \rightarrow 18 Λ_{c} , 42 Σ_{c} , 62 Ξ_{c} , 34 Ω_{c}

CATANIA

- Assumes hot, dense and thermalised QCD medium also in pp collisions
- Interplay of fragmentation + coalescence hadronisation mechanisms
 - \triangleright Coalescence is imposed to be the only mechanism at $p_T \rightarrow 0$

HEAVY-FLAVOUR R_{pPb} IN p-Pb

- D-meson R_{pPb} consistent with 1, described by models with only initial-state effects
- Λ_c^+ now measured down to 0 in p-Pb!
- For Λ_c^+ , hint of a different shape as a function of p_T
 - Possible effect of recombination? Radial flow in p-Pb?

ALICE, JHEP 12 (2019) 092 ALICE, arXiv:2011.06078 ALICE, arXiv:2011.06079

CHARM-HADRON RATIOS IN Pb-Pb

- D+/D⁰: no modification of relative production from pp to Pb-Pb collisions
- D_s+/D⁰: seemingly larger in Pb-Pb collisions compared to pp
 - ightharpoonup As for larger $R_{AA}(D_s^+) > R_{AA}(D^0)$, related to strangeness enhancement + recombination
- Λ_c^+/\mathbf{D}^0 : hint of enhanced Λ_c^+ in Pb-Pb collisions compared to pp
 - > Baryon enhancement from quark recombination + radial flow push

D-MESON R_{AA} - DETAILS

• Increased D meson suppression with collision centrality ad intermediate and high $\ensuremath{p_{\text{T}}}$

- Integrated nuclear modification factor consistent with 1 in p-Pb
- Hint of R_{AA} smaller than 1 in Pb-Pb
 - Final-state effect leads to charm production suppression?

D-MESON R_{AA} - DETAILS

Model references:

BAMPS: arXiv:1408.2964

POWLANG: arXiv:1410.6082

LIDO: Phys. Rev. C 98 (2018) 064901

PHSD: T. Song et al. PRC 92 014910 (2015)

TAMU: M. He et al. PLB 735 445-450 (2014)

Catania: EPJC 78, 348 (2018)

MC@sHQ: arXiv:1305.6544

PROSPECT OF MODELS (PREDICTING $R_{AA} & V_2$)

TRANSPORT MODELS	Collisional Energy loss	Radiative Energy loss	Coalescence	Hydro	nPDF
BAMPS + rad.	✓	✓	×	√	×
LBT	✓	√	✓	✓	√
PHSD	✓	✓	√	✓	√
POWLANG	✓	×	√	✓	√
TAMU	✓	×	√	✓	✓
MC@sHQ+EPOS	✓	✓	✓	✓	✓
pQCD Eloss MODELS	Collisional Energy loss	Radiative Energy loss	Coalescence	Hydro	nPDF
CUJET3.0	✓	✓	×	×	×
Diordevic	✓	✓	×	×	✓
SCET	✓	✓	×	×	√

DETAILS ON D_s⁺ MESON R_{AA}

- R_{AA}(D_s⁺)/R_{AA}(D⁰) ratio for non-prompt above one at low p_T
 - \triangleright About 50% non-prompt D_s⁺ mesons originate from B_s⁰ meson decays (enhanced by beauty hadronisation via coalescence)
- TAMU model describes well both R_{AA}(non-prompt D_s⁺)/R_{AA}(non-prompt D⁰) and R_{AA}(non-prompt D_s⁺)/R_{AA}(prompt D⁰) ratios

ITS UPGRADE

 Run3: Inner Tracking System (ITS) upgrade is crucial for heavy-flavour measurements

J. Phys. G 41 087001 (2014)

 Run4: set of 3 truly cylindrical layers made of ultra-thin curved silicon-pixel sensors

CERN-LHCC-2019-018