NRC "Kurchatov institute"-PNPI

Prospects of the Neutrino-4 experiment on the search for sterile neutrino

Collaboration Neutrino-4:

1. NRC "KI" Petersburg Nuclear Physics Institute, Gatchina,

2. NRC "Kurchatov institute", Moscow,

3. JSC "SSC RIAR", Dimitrovgrad, Russia

4. DETI MEPHI, Dimitrovgrad, Russia

Serebrov A.P., Ivochkin V. G., <u>Samoilov R.M.,</u> Fomin A.K., Neustroev P.V., Golovtsov A.V., Chernyj A.V., Fedorov V.V., Parshin I.V., Gerasimov A.A., Zaytsev M.E., Chaikovskii M.E.

LXXI International conference NUCLEUS – 2021

Sterile neutrino search

Experiment Neutrino-4 result Reactor antineutrino anomaly - Δm²=7.3 eV², sin²(2θ) = 0.36, resolution 250 keV, bin 125 keV Observed/predicted averaged event ratio: R=0.927±0.023 (3.0 σ) 1.4 O Observed, 24p, average (125, 250, 500 keV). First obs. + second cycle Ratio of Observed To Predicted Reactor-v's Solar Neutrind no oscillation Anomaly 1.2 -(1968 - 2001) $\Delta m_{14}^2 = 7.3 \pm 1.17 \text{ eV}^2$ 3 V N(L, E)/N(L,E)_{average} → v-oscillation $\sin^2 2\theta_{14} = 0.36 \pm 0.12$ 1.0 Atmospheric Neutrino Anomaly Terra Incognita (1986 - 1998)Reactor to be explored CL 2.9σ Antineutrino → v-oscillation 0.8 > 20 projects.... Anomaly (2011-) → v-oscillation ? Average 125, 250, 500 keV 10000 100000 0.6 - $\Delta m^2 = 7.3 \text{ eV}^2$, $\sin^2(2\theta) = 0.36$ χ^2 /DoF 20.61/17 (1.21) GoF 0.24 Reactor - Detector Distance (m) χ^2 /DoF 31.90/19 (1.68) Unity GoF 0.03 1.0 1.5 2.5 Gallium anomaly 2.0 L/E LSND, MiniBooNE result GALLEX SAGE Ξ Deficit Cr1 Cr $\Delta m_{14}^2 \, (eV^2)$ $R_{avr} = 0.84 \pm 0.05$ MiniBooNE best fit (0.918, 0.041 eV²) 0.1 --- (0.01, 0.4 eV²) V_e excess $= N_{exp}/N_{cal}$ 0.015 MiniBooNE 1σ allowed band GALLEX SAGE ν mode: 12.84 $\times 10^{20}$ POT 200< E_v<1250 MeV $\bar{\nu}$ mode: 11.27×10^{20} POT Cr2 0.010 6.0 CL 3.2σ 10 0.005 £ CL 6.0σ 0.8 $R = 0.84 \pm 0.05$ 0.7 -0.005 10^{-3} 10^{-2} 10^{-1} 1.0 L/E [meters/MeV] $\sin^2 2\theta_{\mu e}$

125, 250, 500 keV. σ =±250 energy resolution. 2 cycles. Δm = 7.3eV², sin²2 θ = 0.36. 2.9 σ CL

Future of the Neutrino-4 experiment

SM-3 research reactor

- 100 MW thermal power
- Compact core 42x42x35cm
- Highly enriched ²³⁵U fuel
- Separated rooms for experimental setup
- Rooms poorly protected from space radiation

Vertical and horizontal sections of SM-3 reactor

New room, same advantages and same problems

Gamma and fast neutron backgrounds in passive shielding does not depend neither on the power of the reactor nor on distance from the reactor

New lab for the Neutrino-4 experiment location SM-3 reactor core 4 antineutrino detectors • 5x5 sections • Gd doped LAB-based liquid scintillator

- Total volume 7m³
- 6 14m base

Detector's lightguides system

1.2 m length of lightguideLightguides are assembled into 5x5 array

Lightguides system assembling

Detector's case Transparent plex tank Detector's design. Models Detector fully assembled Calibration holes Scintillator filling hole

Detector's design. Transparent tank

Detector's design. Case

Detector's design. Transport system

Detector's design. Transport system

Platforms

Inverse beta decay events selection

104

10³

0²

0

1.0

0

Light intensity

Q_{total}

Q_{tail}

600

Alpha particles

Fast neutrons

Gamma rays

Time in ns

400

200

Scintillator PSD capability

Energy-PSD distribution. IREA scintillator with 7% DIN concentration

Magnetic shielding

ASF48 card with FADC

Trigger	Nearest Next Trigger
Thresi Input Signal after Preamplifier	nold Level
	Sample Time 2
Offset Sample Time 1	Minimum = Offset + 6
(015) (Sample #)*2 ^(Sample Modifier)	
	(65 MHz)

Channels / Card 48/24/12 $48 \ge 16 = 768$ Channels / System maximum Target DAQ System CROS-3: CCB16-B Top Level Concentrator • CBS-B CROS-3 System Buffer (PCI Card) Sampling Rate (10, 20, 40, 50, 80, 100, 160, 200, 400) MHz Sampling to discriminator delay Sampling Period * 14 ADC resolution 10/12 bit Sample Number / Trigger (1-31), (2-62), (4-124), (8-248), (16-496), (32-992)Offset Before Trigger 0...15/0...30/0...60 Self Trigger Mode Individual for each channel Threshold Individual for each channel (0x000...0xFFF) Sampling Mode Individual for each channel Only for non-interleave modes Sampling Rate / 2, Sampling Rate / 4, Sampling Rate / 8 External Trigger Mode Common for all channels Distance between nearest triggers (Sample Number + 6) * 15.38 ns (for each channel) (If a channel has enough memory space for next event) Channel's L1 FIFO 48 x 1024 / 24 x 2048 / 12 x 4096 - 16-bit words Output L2 FIFO 16384 16-bit words Sample Timer 44-bit, 100 MHz, 48 hours (Common for all channels) Serial Link (signal levels, bit rate) LVDS, 100MBPS Card size 100 x 160 mm

Single + 3.8V, 2.7A (10,3W)

Power supply

Data Capture Timing (Self Trigger Mode)

High Voltage Distribution System HVDS3200 and active voltage-dividers

High Voltage Distribution System And active divider for PMT

- Voltage adjustment 0...1500 V; 0.1%
- Maximum current 0.5 mA
- Current monitoring 0.1%
- Voltage monitoring 0.1%
- Stability (during 1 day) 0.1%

Active shielding

- Polysterene based scintillator
- Optical fibers with SiPM are used
- "Spectral" or "logical" operating modes

Readout for active shielding

Fool scale active shield

Counting rate -20800/s

Measurements with section model

Mirror plex lightguide

Single section model

aperture

Section with NEOS scintillator inside shielding

Scintillator volume ~55 liters

Section with NEOS scintillator inside shielding Calibration with Co⁶⁰

Maximum deviation from "average" peak (scanning mode) is less than **6%**

Energy resolution for Co⁶⁰ line **± 300 keV**

PSD for prompt signals of correlated events from Cf²⁵² fast neutrons in "scanning" mode

PSD distribution prediction for detector at SM-3

PSD parameter distribution for 10 sections providing that new detectors efficiency is not worse than working now, correlated background is the same and accidental coincidence background is suppressed at least 3 times due to 5 times gadolinium concentration

Expecting improvements of statistical accuracy for the Neutrino-4

Method	Consequence	Increasing accuracy factor
4 detectors	3x larger volume	1.6
Gd concentration	4x less accidental background	1.5
PSD	4x less correlated background	1.3
Total		3.1

Neutrino-4 experiment at the PIK reactor

Conclusions

- New measurements with detector Neutrino-4 and new scintillator with more high concentration of Gd and with PSD capability
- Creation of the second neutrino laboratory at the reactor SM-3
- Creation neutrino laboratory at the reactor PIK
- The development and manufacture of a new detector Neutrino-4 with a sensitivity of 3.1 times higher

Thanks for your attention!

Energy calibration of the full-scale detector

