EDELWEISS (+Ricochet Ge) Low-energy spectrum studies

The answers to the quiz:

Detector

- Energy scale uncertainties
- Background model measurement
 - Low-energy Spectra
 - Time dependence?
 - Explanation?

J. Gascon Lyon 1, CNRS/IN2P3/IP2I

Edelweiss-Ricochet detector principle

- High-purity Ge
- Heat channel: Ge-NTD thermistance
 - Total energy
 - Glued on electrode or Ge surface
 - Signal independent of hit position
- Ionization channel: electrode
 - Al evaporation or lithography
 - Electron Recoils: N_{pairs} = E_{recoil} / 3 eV

Neganov-Trofimov-Luke (NTL) heating

 $E_{heat} = E_{recoil} + N_{pairs} V$

Reduced ionis. yield for Nuclear Recoils

 $N_{pairs} = Q * E_{recoil} / 3 eV$

with Q \sim 0.2 for 5 keV NR

3rd category: "Heat-only events" (HO)

Energy scale uncertainties

- Absolute scale from ⁷¹Ge triplet (160 eV, 1.3 keV, 10.37 keV)
- Heat channel non-linearity correction:
 - Scaling ⁷¹Ge spectrum up/down using NLT boost (from 8V to 78V)
 - Heat/ionisation ratio of Compton plateau used in 10-2000 keV range
 - ~5% correction between 3 and 300 keV, controlled to <1%

Surface Event Identification

Used in determination of background model for all surface events

Edelweiss-Ricochet Ge detectors

EDELWEISS-III (2011-2017)

- 24x860g FID detectors with >500 eV heat resolution (230 eV_{ee} ionisation)
- Complete data-driven JCAP05 (2016) 019 EPJC 76 (2016) 548
 background model > 1-5 keV

Ricochet-Ge (2022...)

- Goal: 27x38 g Ge detectors, σ =10 eV heat
- HEMT: 20 eV_{ee} ionisation (HO mitigation)
- Planar electrode option (if surface backgrounds are confirmed to be sub-leading in CENNS studies)

RED20/30 (2018-2020)

- EDELWEISS DM searches performed with
 33.4 g prototypes from common
 Ricochet/EDELWEISS R&D
 PRD 99 082013 (2019)
 PRL 125, 141401 (2020)
- First look at bkgs below 1 keV

EDELWEISS-SubGeV first steps

Also: development of HO mitigation using HEMT readout, and SSED / NbSi TES sensors

Edelweiss-Ricochet Ge detectors

Heat-Only background

- Dominates the spectrum at low energy
- Average of ~40 DRU @ 5 keV in search data.
 (140 DRU @ 1.3 keV_{ee}): 4 times less by end of run
- Extensive study in E. Queguiner's thesis, Oct. 2018 (<u>https://tel.archives-ouvertes.fr/tel-02025002</u>)
- No ionisation ($\langle E_{ion} \rangle = 0$, $\sigma_{HO} = \sigma_{ion_baseline}$)

- Pulse shape of signal consistent with standard pulse on both GeNTD sensor, same amplitude
 - Time between events follows Poisson distribution
 - ~triple-exponential energy distribution
- No coincidence with other detectors or muon veto
- Incompatible with ²⁰⁶Pb recoil rate (~0.1 DRU @ 5 keV) expected from observed α rate
- Comparable rates in all detectors within factor 3
- Rates in detectors vary in a correlated way

EXCESS in Edelweiss (+Ricochet Ge) detectors

Time evolution of HO rate

- Global trend: decrease of rate with a 250±100 day time constant
- Sudden increase (following cryostat warm up) by factor 14±4 observed in all detectors, decaying with a time constant of 12±2 days: inconsistent with known sources of radioactivity
- Similar trends observed over a period of 3 years

June 15th, 2021

Efficiency-corrected spectra (before rejection)

860 g detectors

- Data-driven likelihood for individual contributions
- Extrapolations below 1 keV (gamma) - 5 keV (HO)

33 g detectors

- First look at 0.1 5.0 keV
- Above ground (except for RED30)
- No separation of components (except RED80 above 1 keV)
- Wrt 860g, increase by one order of magnitude in RED30 @ 5 keV: 860 g/33 g
- No excess wrt expected aboveground bkg above 1 keV
- 10⁵ DRU at 200 eV

Search for NTL boost in 0.1 - 5 keV range

- No reliable ionization tag in 0.1– 5 keV range
- Use NTL boost instead to test for charge
- Compare detector rates over similar time range (reduce HO rate fluctuations)
- Measurement limited by possible fluctuations of heat resolution over the period
- Electron recoil contribution negligible above 400 eV
- <400 eV: worse resolution (35 vs 42 eV) and leakage currents at 78V?</p>

Detector size & sensor

Relative comparison: No absolute efficiency yet

- RED30: 33.4g
- NbSi209: 196 g (mass x6 RED30)
- FID803: 820 g (mass x25 RED30)
- Rates per day in RED30 and FID803 comparable (factor ~25 in rates per kg.d)
- Some reduction of rate in detector with NbSi sensor: Sensitivity to athermal phonons? Absence of glue?

Possible explanations explored so far

[E. Queguiner, PhD thesis, Oct. 2018] https://tel.archives-ouvertes.fr/tel-02025002

Hypothetic source	induced by	Tests	Period	
	vibration	GM ON/OFF + FID211	run309, run310	
Stress in Ge	pressure from holder	Removed Cu holder	run310	
	gluing Some effect ?	NbSi + DEP detectors	run311	
⁴ He	condensation/evaporation	on/evaporation ³ He as exchange gas		
²⁰⁶ Pb, α , β	in Al	Study of surface event rate and ratio	all runs	
	in αGe	Study of surface event rate and ratio	all runs	
Glue	radioactivity	HPGe measurements + NbSi + DEP detectors	run311	
NTD	radioactivity	Event shape + NbSi TES	run311	
Gold pad	radioactivity	HPGe measurements	run310	
Thermal link (Kapton [®])	radioactivity \rightarrow injection of a heat pulse via the thermal link	Thermal link directly on NTD FID840 and FID844	run311	
Teflon [®]	radioactivity and stress	Replaced by $VESPEL^{(\mathbb{R})}$ (FID837) + Cu holders (FID841)	run310	
XeF ₂ etching	chemical treatment of de- tector surface	Difference between detectors	all runs	
Radiogenic source	²²² Rn,	Study of heat-only event rate	all runs	

Table 4.2 – Summary of the different tested hypotheses concerning the origin of heat-only events. Expected characteristics and tests realized to remove them are presented.

+ size of detector, + thermal/athermal phonons

Take-away messages

- EDELWEISS spectrum between 200 eV and 10 keV dominated by heat-only events
 - Single events with standard pulse shape, in both NTDs, Poisson distributed in time.
 - 100's to 1000's DRU at 1 keV
 - Rates decrease slowly with time (month year), but may increase suddenly following a warm up. Correlation of rates between the detectors.
 - Comparable rates in all the 800 g detectors
 - Smaller detectors: similar number of event/day; increase of the rates in DRUs.
- Steep rise at low energy observed in 33g detectors
 - 10⁵ DRU at 200 eV
 - not affected by NTL boost (ER rate at 100 $eV_{ee} < 6x10^3$ DRU)
- No single source could be isolated (multiple sources?)
 - Strong case against: ²⁰⁶Pb recoils and other source of radioactivity; ⁴He desorption; radioactivity in NTD or in thermal link; stress release in Ge crystal.
 - Weaker case (inconclusive yet): stress release in support or in glue.
 - Best lead: significant reduction (as low as few ten's of DRU at 1 keV) when NTD sensor is replaced by NbSi TES: effect of total absence of glue? Effect of sensitivity to athermal vs thermal phonons?

Work on HO mitigation (HEMT readout, charge tag with NbSi SSED/TES sensors)

BACKUP

Detectors: EDELWEISS-III

- Complete coverage of interleaved electrodes (incl. side of cylinder): maximal surface rejection
- 24 x 820-870g Ge
- 2 x GeNTD (4x4x0.45 mm³) glued on Al electrode
- Supported by 3x2 Teflon clamps inside Cu casing (4pi coverage)
- Heat link to Cu casing via gold pad
 + gold wire + kapton
- Site: LSM (5 μ/m²/day, 10⁻⁶ n/cm²/s)
- Shielding: active muon veto + 50 cm PE + 20 cm Pb + 10cm internal PE
- >99.996% tag of surface events (depth ~2mm) using ionisation
- Heat resolution: 500 to 1500 eV (with 8V NLT boost: 150 to 500 eV_{ee})
- Average ionisation channel resolution = 230 eV_{ee} .
- Exposure: 3000 kgd (250 day cool-down, 2014-2015)
 followed by tests cumulating ~350 day exposure (2015-2017)

Detector RED20

- Ricochet and Edelweiss R&D to improve thresholds
- Reduction of mass from 800 to 33.4 g (h20 phi20)
 - Reduced size of GeNTD: 2x2x0.5 mm³
- Remove thermal link via gold pad, go through NTD
 - Improves NTD sensitivity
 - Heat pulse from environment have a different pulse shape
- No electrode; one GeNTD, glued directly on Ge
- Above-ground lab (IP2I), 17 mK
- 10 cm Pb, with 50° opening above the detector
- 17.7 eV resolution; 60 eV analysis threshold
- Not NTL boost : no quenching uncertainties
- 2018: Above-ground search for SIMP
- Continuous data stream saved on disk, offline trigger
 - Accurate measure of trigger and analysis efficiency (as well as pulse reconstruction bias) by injection of simulated pulses
- Also with similar size/geometry : RED50-60-70

Detector RED30

- Same geometry as RED20: 33.4g Ge, h= 20 mm, Ø= 20 mm, 2x2x0.45mm³ NTD
- Al electrodes on top/bottom surfaces for NLT boost and ionisation readout = lithographed Al grid (500 mm pitch, 4% coverage to reduce phonon trapping)
- EDELWEISS-III cryostat (20.7 22 mK)
- 43 eV resolution at 78V : 1.58 eVee
- Analysis range: 3 30 eV_{ee} (80 800 eV total energy)
- Lowest reconstructed energy used in DMelectron interaction and Dark Photon searches: 6 eV_{ee} (162 eV)
- Also with similar geometry (h10 Ø30, 38g) RED80: detector for above-ground R&D at low bias (2V) to fully exploit ER/NR discrimination (Ricochet goal)

Detector with NbSi phonon sensor

- Ge crystal h20 mm phi 48 mm (196 g Ge)
- NbSi Transition Edge Sensor: sensitivity to athermal phonons
- 100 nm thick, 20mm diam. spiral NbSi sensor lithographed on top surface
- Electrode on top/bottom surfaces: Al grid with 4% coverage
- Transition between 0 -> 1 kOhm at 44 mK
- σ<110 eV, 5 eV_{ee} at 66V bias

1.2x10

RED20: contribution of noise-induced triggers

Heat-Only events: studied hypotheses

Hypotheses about HO origins

- Radiogenic source \rightarrow ²²²Rn
- ⁴He \rightarrow condensation/evaporation
- Gold pad \rightarrow radioactivity
- Thermal link \rightarrow entry point
- $\bullet~$ Teflon \rightarrow radioactivity, stress
- Kapton \rightarrow radioactivity, stress
- Surface events \rightarrow ²⁰⁶Pb, α , β
- \bullet NTD \rightarrow radioactivity, stress
- $\bullet~\text{Glue} \rightarrow$ radioactivity, stress
- Stress in Ge crystal \rightarrow vibration, pressure, gluing
- Surface treatment \rightarrow chemical treatment

 \rightarrow has been studied \rightarrow can not fully explain by itself the heat-only rates.

Time dependency and other correlations

Counts/hour in range 5-80 keV in FID824 (860g)

Counts/hour in range 15-80 keV in FID803 (820g)

Efficiency-corrected **RED30 upper limit** on rate of 1, 2, 3, 4... e- evts **per gram.day** compared with CDMS (arXiv:2005.14067) & SENSEI (arXiv:2004.11378) *Note: SENSI/RED30 ratio in Mass* = ~16, *ratio in surface* ~1/4 -> factor 64

	Mass (g)	1 e-	2 e ⁻	3 e⁻	4 e⁻
RED30	33	<11000	<210	<18	<6
CDMS 140V	0.93	157000	1300	171	58
CDMS 100V	0.93	149000	1100	207	53
CDMS 60V	0.93	165000	1200	245	77
SENSEI	2	450 (<525)	2.4 (<4.4)	<0.25	<0.25