Low energy background: SuperCDMS 0VeV/HVeV

Alexander Zaytsev

15 June 2021

Universität Hamburg

SuperCDMS HVeV detector

0V mode (V_{NTL} =0): Phonon energy = recoil energy

HV mode
$$(V_{NTL} \neq 0)$$
:
Phonon energy = recoil energy + NTL phonon energy
 $E_{phonon} = E_{recoil} + n_{eh}eV_{NTL} = E_{recoil} \begin{pmatrix} 1 + \frac{eV_{NTL}}{\varepsilon_{eff}} \end{pmatrix}$ By taking data at different voltages we can better understand the background
June 15th, 2021 EXCESS workshop Alexander Zaytsev 2

HVeV Run 2 setup

- 0.93 g Si (10x10x4 mm³)
- Surface run (Northwestern University Lab)
- No passive or active shielding
- Surrounding materials: SiO2 (fiberglass PCB), copper, Kapton, tin
- Holdings scheme: mounted between PCBs, ~10-70 gram of force on each corner of the chip
- O(1) days of OV, 60V and 100V data

D.W. Amaral et al, Phys. Rev. D 102, 091101 (2020)

0V

R. Ren et al. ArXiv:2021.12430 (2020):

- Optimum Filter triggering
- 2.7 eV baseline resolution
- 9.2 eV threshold

Paper in preparation

- Dark Matter Nuclear Recoil limit
- OV-HV comparison to better understand the low energy excess

Best in class

OVeV energy spectrum

- Live-time cuts:
 - Temperature
 - Mean baseline
 - Periodic noise
- Event-based cuts:
 - template fit chi-square
- Live time: 0.185 g*day
- ~1 order of magnitude higher rate than in SuperCDMS-CPD

OVeV/HVeV energy reconstruction/calibration

OVeV/HVeV anomalous events

EXCESS workshop

OVeV/HVeV anomalous events

June 15th, 2021

EXCESS workshop

Alexander Zaytsev

OVeV/HVeV spectra comparison

OVeV/HVeV spectra comparison

Energy of the burst secondary pulses

CDMS work in progress

0.7

Current [uA]

0.1

pe

EXCESS workshop

perature (LNT).

SiO₂ Luminescence as a possible source of bursts

- O(10) events/hour
 - τ ~ O(10) ms
- High-energy particles heating up the PCB?
- Many slow pulses are coincident with burst events in the HV data

(PCB): SiO₂

Printed Circuit Board

• 100m underground (NEXUS@FNAL)

HVeV Run 2 (on surface) vs Run 3 (underground) comparison will show how the overburden affects the burst events

- 100m underground (NEXUS@FNAL)
- 3 working HVeV detectors

- 100m underground (NEXUS@FNAL)
- 3 working HVeV detectors

Comprehensive data analysis ongoing. Stay tuned!

Conclusion

- We see a low energy excess in SuperCDMS HVeV detectors in both OV and HV modes
- Burst events account for a large fraction of the background in the HV mode
 - Need to understand how efficient the existing cuts at removing the burst events are
- A part of the OV background seems to have the same origin
- The data favors an external origin
- PCB luminescence could be the culprit
- Next steps:
 - Designing a new detector payload scheme with minimal use of PCB/insulator
 - Maximal detector coincidence tagging capability

Backup slides

Questions to address during the talk

- Detector concept: slide 3
- Observed energy spectrum: slide 4
- Time dependency and known correlations of the excess: some events come in bursts
- Are there approaches to explain the excess: PCB luminescence?
- What are other known backgrounds: charge leakage?
- Are there uncertainty estimates for the energy scale: ~11% uncertainty in the MF calibration

Time distribution of the secondary pulses

Burst secondaries vs non-burst events

OF-MF response matrices

- The response matrices convert the energy estimator used in the HV data (MF integral) to the one used in the 0V data (OF).
- The matrices are built using the simulations assuming 4 cases:
 - 1. nominal number of secondary pulses
 - 2. double of secondary pulses
 - 3. half of the secondary pulse
 - 4. no secondary pulses.

HVeV R1 – HVeV R2 rates

	HVeV-R2		HVeV-R1
Voltage [V]	100	60	-140
$\sigma_E \ [e^-h^+]$	0.03	0.05	0.1
	Events/(gram-day)		
$1 e^{-}h^{+}$	$(149 \pm 1) 10^3$	$(165 \pm 2) 10^3$	$(157 \pm 2) 10^3$
$2 e^- h^+$	$(1.1 \pm 0.1) 10^3$	$(1.2 \pm 0.2) 10^3$	$(1.3 \pm 0.2) 10^3$
$3 \ e^- h^+$	207 ± 40	245 ± 86	171 ± 59
$4 e^{-}h^{+}$	53 ± 20	77 ± 48	58 ± 34
$5 \ e^- h^+$	16 ± 11	20 ± 25	16 ± 18
$6 e^{-}h^{+}$	5 ± 6	10 ± 17	24 ± 22

HVeV-R1: R. Agnese et al, Phys. Rev. Lett. 121, 051301 (2018) HVeV-R2: D.W. Amaral et al, Phys. Rev. D 102, 091101 (2020)