

Very High Energy Gamma-ray Astronomy with the Cherenkov Telescope Array

Jon Lapington
On behalf of the UK-SST Camera Project*

Outline

- Introduction
- The Cherenkov Telescope Array
- The Small-Sized Telescope
- Prototyping CHEC
- SST Camera Project
- CTA Observatory Status
- CTA UK Science Community

Introduction

 Creates purely electromagnetic cascade

Extensive Air Shower

~ 100 m

Cherenkov Light

Light content

Orientation

→ Energy of primary particle

Cherenkov Properties

- ~10 photons / m² (for 1 TeV γ -ray, 200 m from impact)
 - → Telescope array, sensors with dynamic range 1 1000+ p.e.
- Lasts a few 10s of ns
 - → Fast photosensors and electronics
- Peaks at 350 nm
 - → Blue sensitive photosensors

Focal Plane

Images from multiple telescopes overlaid

γ-ray

 Creates purely electromagnetic cascade

Extensive Air Shower

Night Sky Background

- Stars, air-glow, Zodiacal light...
- Extra-galactic rate ~100 MHz per pixel (for 100m² dish, 0.15° pix)

~ 10 km

~ 100 m

Cherenkov Light

Light content

Orientation

→ Energy of primary particle

Cherenkov Properties

- ~10 photons / m² (for 1 TeV γ -ray, 200 m from impact)
 - → Telescope array, sensors with dynamic range 1 1000+ p.e.
- Lasts a few 10s of ns
 - → Fast photosensors and electronics
- Peaks at 350 nm
 - → Blue sensitive photosensors

Focal Plane

Images from multiple telescopes overlaid

γ-ray

 Creates purely electromagnetic cascade

Extensive Air Shower

Night Sky Background

- Stars, air-glow, Zodiacal light...
- Extra-galactic rate ~100 MHz per pixel (for 100m² dish, 0.15° pix)

~ 10 km

~ 100 m

Cherenkov Light

Light content

Orientation

→ Energy of primary particle

→ Direction of primary particle

Cosmic-ray

- Dominates γ -ray rate, even after NSB is reduced
- Complex cascade
- · Irregular images in the camera
- → Offline image analysis

Cosmic-ray γ-ray

Cherenkov light pool on the ground

Cherenkov Properties

Focal Plane

Images from multiple telescopes overlaid

- ~10 photons / m² (for 1 TeV γ -ray, 200 m from impact)
 - → Telescope array, sensors with dynamic range 1 1000+ p.e.
- Lasts a few 10s of ns
 - → Fast photosensors and electronics
- Peaks at 350 nm
 - → Blue sensitive photosensors

GROUND-BASED GAMMA RAY ASTRONOMY 1989

Whipple Telescope 1968

T. Weekes et al., ApJ 342 (1989) 379

"Observation of TeV Gamma Rays from the Crab Nebula using the Atmospheric Cerenkov Imaging Technique"

Cta

CTA South, Paranal

25 Medium Sized Telescopes (MST)

- 12 m diameter reflector
- > 7° FoV
- ~1 km².

CTA South, Paranal

25 Medium Sized Telescopes (MST)

- 12 m diameter reflector
- > 7° FoV
- ~1 km².

4 Large Sized Telescopes (LST)

- 23 m diameter reflector
- >4.5° FoV
- ~0.1 km²

CTA South, Paranal

The Small-Sized Telescope

SST Camera

Requirements

Small-Sized telescopes

- Large area coverage essential for (rare) highest energy showers (to 300 TeV)
- Good event quality (resolution, background rejection) requires telescope separation not too large → many units → low unit cost
- High telescope-multiplicity events provide the highest resolution events of CTA at around 10 TeV

SST Camera Design Implications

- Large impact distance measurements → wide field of view, large time gradients
- Wide field of view without compromising on pixel size/image resolution implies many pixels → low-cost individual pixels
- Large time gradients → digitization in wide time window flexibility for optimal offline extraction of time and intensity information

CTA Small-Sized Telescope

- CTA-UK groups have been involved in the SST concept from the beginning
 - The UK provided the basic optical design on which CTA-SST dual-mirror (SST-2M) telescopes are based
 - UK pushed to ensure all SST-2M optical designs are compatible with a single camera
 - The UK camera was deliberately designed to be compatible with all SST-2M telescopes
- SST design drivers:
 - High performance at low cost
 - Ease of production and maintenance
- Design allows a smaller, cheaper camera
 - → Compact High Energy Camera (CHEC)
 - → CHEC largely developed in the UK

Prototype SSTs

- Prototypes for all SSTs (telescopes and cameras) exist
 - → The dual-mirror telescope prototypes provided an excellent
 - test- bed for CHEC

Meudon, France

Serra La Nave, Italy

Krakow, Poland

GCT

ASTRI

SST-1M

ASTRI and GCTCompeting SST-2M designs

Prototyping CHEC

Prototyping CHECOverview

- CHEC-M & CHEC-S
 - Same fundamental architecture
 - Different photosensor technologies
- Tested in the lab and on-telescope
 - CHEC-M on GATE (GCT)
 - CHEC-S on ASTRI

CHEC-M on GCT: first light for any CTA prototype

CHEC-M On-Telescope Tests in Meudon

- Cherenkov Images
 - Successful self-triggering on Cherenkov events (cosmic rays no γ -rays)
 - First light for any CTA prototype

Prototyping CHEC

Evolution

- CHEC-M
 - MAPMs
 - TARGET 5
 - 1 Gbps DACQ boards
 - Wash U. Backplane
 - → Proof of principle of many aspects (e.g. triggering and readout), limited by ASIC performance and MAPM gain spread
- CHEC-S
 - SiPMs
 - Liquid cooling
 - TARGET C and TARGET T5TEA
 - In-Project Backplane
 - 10 Gbps XDACQ
 - Slow signal chain for pointing
 - → Most CTA requirements met, performance limited by SiPMs and thermal control

Prototyping CHECCHEC-S

Prototyping CHECCHEC-S

Prototyping CHEC Camera Architecture

ASTRI-CHEC Campaign Field trials - 2019

∷: SSt camera

Sicily, Southern slope of Mt. Etna at Serra La Nave
Hosted by INAF-Catania
1750 m asl

ASTRI-CHEC Campaign

Field trials - 2019

- CHEC-S installed on ASTRI in 2019
 - Interfaces prepared before arrival and verified
 - First light ~48 hours after arrival onsite
 - Images in focus without additional camera alignment
 - On-sky data a good match to MC expectations
 - Continuous calibration performed in parallel to observations
 - Astrometric verification via slow signal
 - Photosensor calibration via interleaved LED flashes
 - On-telescope operations fully exercised

log(intensity)

ASTRI-CHEC Campaign Field trials - 2019

- Observation strategy during CHEC-on-ASTRI campaign: Wobble Mode
 - Pointing direction is offset from the source by 1 degree
 - Observations alternate between offsets on different sides of the source
- Priority of campaign: Test on-telescope operation of camera and compatibility with ASTRI structure - SUCCESS
- Gamma-ray source observation: Sensitivity limited by mirror reflectivity

Cherenkov showers pointed towards source position (as reported by ASTRI-Horn SQL database)

2019-05-02 20:49:33.133597552

CHEC-S on ASTRI

Field trials - 2019

- Slow signal Predicted pointing accuracy
 - Utilise timing information as star crosses pixel boundary
 - Simulations: 4-5 arcseconds
 - Requires ~10 stars in FoV
 - Up to 30 stars expected in a typical FoV (Vmag < 9)
- Can be used for
 - NSB level during observations
 - Disabling pixels with stars present
 - Telescope pointing
 - **PSF** across FoV

Match

Found

Brightest

Hotspot

Hotspots

SST Camera Project

SST Camera

Selection

- Following 2019 CTAO Harmonization review
 - CHEC selected as baseline for the SST Camera
 - ASTRI selected as the baseline telescope structure
- SST Camera Key Features
 - Fine pixellation, ~9° FoV
 - SiPMs with Target ASIC readout
 - Costs a factor of 5 lower than MST/LST per pixel
 - Higher detector efficiency
 - Efficient trigger scheme
 - Full waveform readout
- Now focused on an iteration to ensure
 - Ease of production
 - High quality
 - Ease of installation
 - Low maintenance needs

6 mm pixel 2048 pixels

32 Photosensor modules → ~9° FoV

50 kg Liquid cooling (<1kW)

SST Camera

Design Finalization

Many lessons learnt from CHEC protypes

- Assembly concept
 - Involves removing SiPMs to access Target Modules
 - Risk of SiPM damage
 - Involves inserting Target Modules through focal plane
 - Risk of TM damage

New camera assembly scheme – SOLVED BOTH

- SiPMs
 - Optical Cross Talk (40%)
 - Limits trigger performance and charge reconstruction
 Latest LVR3 SiPM devices utilized SOLVED
 - Control (Bias voltage resolution)
 - Limits trigger uniformity
 Per pixel bias redesign SOLVED
- Cooling capacity
 - Adequate for SiPMs (FPP worked well)
 - But large gradient across TMs (> 20 °C)
 - Limits charge reconstruction (ASIC temperature dependence)
 Cooling system upgrade SOLVED
- LED Flasher concept
 - Relies on reflection from M2
 - Hard to calibrate in the lab

New Flasher circuit design and placement – SOLVED BOTH

TM insertion

Camera Series Production

Modular assembly

Camera Series Production (SST Camera Project)Timeline

- Series production can begin once:
 - Camera design is accepted by CTAO
 - IKC Agreements are signed
- UK camera production in parallel and proportionate to MPIK production
- Camera production to be ramped up in increasing batches
 - improve manufacturing efficiency, optimize processes, iron out teething troubles
- Likely schedule:
 - SST Design Consolidation Phase completion mid 2022
 - ERIC finalization Early 2022 → agreement on IKCs
 - UK Production Phase (5 year) begins Q2 2022
 - First SSTs onsite beginning Q3 2023
 - SST array (Phase 1) completion 2026

SST Camera Project

- Strong and tightly knit international team
- Now working on final camera design iteration after prototyping and downselection
- Close links between MPIK, Germany (project lead organisation) and UK group
- MPIK Director (Hinton) ex-lead of UK-CTA project
- SST Camera Project lead (White) ex-manager of UK-CTA project
- UK SST Project is thoroughly embedded within the SST Camera Project

CTA Observatory Status

CTA Observatory LST Prototype on La Palma

Phasogram of Crab Pulsar as measured by the LST-1. The pulsar is known to emit pulses of gamma rays during phases P1 and P2. Credit: LST Collaboration

The construction of the LST prototype, LST-1, was completed in October 2018 at the Observatorio del Roque de los Muchachos in La Palma.

CTA Observatory

In-kind Contributions

- CTAO GmbH is in the process of becoming a European Research Infrastructure Consortium (ERIC)
 - Being negotiated by Board of Governmental Representatives
 - ERIC Step 1 application submitted March 2019
 - ERIC legal framework finalisation ~1 year timescale from now
- In-kind Contribution (IKC) agreements
 - Once ERIC starts IKC agreements defined and signed
 - Member voting rights and data access dependent on IKC value
 - Necessary Cost Book approved
- CTA cost
 - Estimated CTA Phase 1 overall cost, Total 320-325M€
 - UK IKC likely to be ~3M€

CTA UK Science Community

CTA Science UK Community

- CTA science good alignment with UK science community interests:
 - Dark matter
 - Beyond the Standard Model physics
 - Very-high-energy cosmic rays
 - Multi-wavelength astrophysics of pulsars, supernova remnants and AGN
 - Transients and multi-messenger astrophysics
- Strengths and synergies with:
 - UK gravitational wave community
 - GRB follow-up community
 - Swift and the future SVOM mission
 - Longer-term science involvement in Einstein Probe
 - UK lead roles in SKA and Rubin Observatory projects
- UK science return from CTA
 - Likely to be proportionally much larger than anticipated ~1% IKC investment.

CTA Science UK Community

Home

The Cherenkov Telescope Array (CTA) will be the major global observatory for very high-energy (VHE) gamma-ray astronomy over the next decade and beyond. Covering a photon energy range from 20 GeV to 300 TeV, CTA will have a wider field-of-view, higher sensitivity, and better angular resolution than any instrument that has gone before. Its two arrays will have unprecedented capability for surveys, imaging of gamma-ray sources and time-domain astrophysics. CTA's science remit is wide. While the early science will come from the Key Science Projects, the observatory will be operated as an open, proposal-driven observatory, with all data available on a public archive after a proprietary period. In addition, data will be taken regularly as part of multiwavelength/multimessenger ToO campaigns. UK scientists are not only helping to build CTA but also helping to define its scientific programme: join us for the CTA-UK Science Meeting and find out what CTA can do for you!

Key dates:

Poster abstract submission deadline:

30 April 2021

Registration deadline:

18 June 2021

Organised by the IOP Astroparticle Physics

IOP Institute of Physics
Astroparticle Physics Group

- Two-day CTA-UK Science meeting
 - 24-25 June 2021
 - International and UK speakers from over a dozen institutes
 - Free registration
 - Virtual poster session with prizes!

Thank you for your attention