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@ I Physics Motivation for ttH(yy) )\ | f

We need to measure it as accurately as possible, in order
to unravel the mysteries of the new fundamental Top
quark — Higgs boson interaction discovered in 2018.

 SM ttH cross section: o = 0.507 pb

* SM H->yy branching ration: Byy = 2.27x1073

* Very high signal purity and fully reconstructable
invariant mass

* High photon reconstruction and isolation
efficiency due to the high resolution of the
ATLAS electromagnetic calorimeter

* Backgrounds determined in fit of M,,, side-
bands with 1-parameter function

Sum of Weights / 1.375 GeV

30

25

20

15

10

¢ Data ATLAIS Prelimin;ry
-------------- Continuum Background Vs = 13 TeV, 139 fb!
- === Total Background m, = 125.09 GeV
——— Signal + Background All categories

In(1+S/B) weighted sum
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-construction and Event Sele- ol3 - S0

 Photons: reconstructed from calorimeter

clusters formed using a dynamical, topological |
cell clustering based algorithm, selection or <
requires > 2, where the photons with highest w > " q
b
Y
SNVVVWW

pr are selected as candidates for the

diphoton system
.

* Jets: reconstructed using anti-K¢ algorithm

e BDT used to reconstruct top decays and " v
define event categories
|
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@ Data and Simulated Samples 1;)<j

0000

Simulated MC data with
* 105-160 GeV mass range for M,

e Signal ttH : , Background ttyy: . ot

NTNI (non tight, non isolated photons) data as an approximation of background with Full Run2
dataset, all analysis cuts + # of jets £ 3

* Tight refers to identification requirement, which accounts for photon shape in the calorimeter.
Tight is used for when calorimeter assigns higher degree of confidence that this is a prompt
photon, loose for smaller confidence

* |solated refers to hadronic activity (tracks, calorimeter signals) around a photon. It is used to
separate QCD jet from photons , QCD jets have a lot of activity, prompt photons have little

* Tl (tight, isolated photons) is used for extracting final result (best approximation to signal)
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@ Problem

VOOV

Rejecting background using photon kinematics could sculpt the
background in case of correlations of the photon kinematics with M,,,,

Example of sculpting, which would prevent the
1-parameter function fit to the side-band
where in our case blue integrated area
distribution could be the signal, and red the
background after background rejection .

ATLAS Work in Progress
V$=13 TeV
1o

Il
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80 90 100 110 120 130 140 150
M,, [GeV]

The reason for the sculpting is the
strong correlations between some of
the photon kinematic variables with
the M, distribution. Example above is
the leading photon’s distribution in
NTNI data.
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e Solution: Adversarial Neural Networks

* Binary classifier function is trained using two neural networks with the idea to find the balance between
minimizing loss function ] and maximizing J,4v:

minods_maxead,,.]FinalClassifier =]cls (ecls.) -A ]adv(ecls.eadv.)

Classifier Adversary
£ N F i\
oo . eCff ezidv

Classifier: trained to .
use the photon ‘o Q - Adversary: trained to
kinematic variables to : . decorrelate the
reject the background variables from My,

. J \ J

Lossz(ecl.‘ ’eadv)
e X:data

0.5 and 0,4, : weights parametrizing
classifier and adversary

* A >0: controls the performance of J




- Neural Networks -‘

How the idea was born Implementation in ML The complex dynamic of
two neural networks

dendrite

Scwann cell

node of Ranvier

> Adversarial Neural Networks

» Neurons in the brain carry > A neural network in ML s a > i
information by transmitting collection of units (neurons), Flrfd best balance b.etweerj
electrical impulses (signals) and which transmit and process using the photon kinematic
have three basic parts: a cell body, information variables for further

background rejection and
fixing the problem which

an axon and dendrites » Hypothesis function h(x) :

» The dendrites receive information ho(z) = g(Olay” +Orai” + O1ay” + Orai) comes from that, by de-
(input), the nucleus processes the where O are the weights of the cost function correlating those variables
received information and the axon > Cost function: from M,
sends the processed information to  m K Lo s s
other neurons (output). J©) = =3 Yy he(e?) + (1 -y} log(1 — he(a ™)k + - D 3~ Y~ ()2

i=1 k=1 1=1 i=1 j=1
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ok ]Jenson-Shannon Divergence (JSD)

How do we quantify sculpting?

accept

Idea is to construct a metric of background rejection (&py4. = %) vs. background sculpting (JSD factor)

bkg
JSD is a generalization of the Kullback-Leibler divergence:

KL(A || B)=-X;A;logyB; + X A; lognA;

1
where A and B are the two distributions we are
comparing, i are the discrete bins

For identical A and B, KL = 0, for completely different Aand B, KL=1
JSD avoids the instabilities in KL (ex. For every bin i where 4; > 0 but B;=0, 1->0)

JSD(A [ | B) =(KL{A | | M) +KL(B | | M))

o M
B = MAD

M = A8
2




Importance
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Importance of Variables in Data

ATLAS, Work in Progress

Importance of Variables in MC
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Variables used for training:
* pr,E n, ¢, Ad, An and AR of the leading and sub-leading photons
* pr, E n, ¢ of leading, sub-leading and third jets
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Fraction of Events/1 GeV
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ATLAS, Work in Progress
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1) classifier accuracy: 90.1 %

2) classifier accuracy in signal: 94.5 %

3) classifier accuracy in background: 85.6 %
4) ANN accuracy: 60.5%

5) ANN accuracy in signal: 66.8%

6) ANN accuracy in background: 54.3%
ROC=67.0%

JSD (105-160) Gev = (0.04 £ 0.01) %

JSD (120-130) gev = (0.04 £ 0.04) %

Sculpting

minimized]

Fraction of Events/0.01

Fraction of Events/0.01

-Simulated Samples, Results -‘
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ATLAS, Work in Progress
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@

Fitting the M, distribution after ANN
training shows a good agreement
with an exponential of first order.

Initial with first order exponential:
2

X _

ndf 0.76

prob = 82%

ANN with first order exponential:
2

X _

ndf - 1.95

prob = 2%

x> .

ndf -> goodness of fit

prob -> probability that the values are

independent, or significance of -

0.06
0.055
0.05
0.045
c 0.04
0.035
0.03
0.025
0.02
0.015

of Events/1 GeV
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lSimuIated Samples Results, Fitting
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ATLAS, Work in Progress
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Overall, the sculpting in simulated data was
removed, while keeping efficiency optimal
and modeling simple.
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Fraction of Events/1 GeV

- NTNI Data, Results

R

0.24
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0'225_ ¥ Initial background E % ATLAS, Work in Progress uH Signal A
0'2:_ —=— Classifier background - S
0.18 — T
0.16 - —&— ANN background - % ttyy Background
0.14F = S
0.12E ATLAS, Work in Progress 7 8
. - - L
0.1E- =
0.085 E
0.06 =
0.04F E
002;_ i ¢ Bt .
Gl I 1
0990~ 120 130 140 150 160 NN Discriminant
M,,[GeV] -
o
1) classifier accuracy: 95.2 % S [ ATLAS, Workin Progress
2) classifier accuracy in signal: 96.1 % S [' , &
3) classifier accuracy in background: 94.3 % Cu]’fmg 'j_; ttyy Background
/4 /4 /4
--------- minimized! s
4) ANN accuracy: 83.4 % 8
5) ANN accuracy in signal: 95.7 % -
6) ANN accuracy in background: 71.1 %
ROC=0.94
JSD (105-160) ev = (1.14 £ 0.01) %
JSD (120-130) gev = (0.05 + 0.01) % 0 01 02 03 04 05 06 0.7 08 09 1

11 ANN Discriminant



@

Fitting the M, distribution after ANN
training shows a similar agreement
to the initial distribution with an
exponential of second order.

Initial with first order exponential:
2

A =332

ndf

ANN with first order exponential:
2

X _
ndf—2.84

12

Fraction of Events/1 GeV

‘. NTNI Data Results, Fitting
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Overall, the sculpting in real NTNI data was
also removed, while keeping efficiency

excellent and modeling simple.



£ > Conclusions and Next Steps

Next Steps

» Improve the background sculpting tests
» Improve the sensitivity with feature engineering
» Determine the optimal event categorization, which yields the optimal sensitivity

Conclusions

» Rejecting background using photon kinematics sculpts the background due to correlations of the
photon kinematics with M,

» An adversarial neural network platform was proposed and adapted for the purpose of rejecting
background events with maximum efficiency in the ttH(yy) channel while dealing with the problem of
sculpting.

» Significant reduction of the sculpting observed in MC and Data, while efficiencies are kept optimal.

» We are a step closer to better constrains on the top-Higgs Yukawa coupling, whose precise
measurement could be a doorway towards exciting new physics.
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LHCP 2018, Hadronic
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En tnes 3823
:—{IHH ATLAS Work in Progress '\S’:ZaD :;g ?;:
:_m —— No Cut
E m —— Had1
-{H ‘ - —— Had2
ot - —— Had3
E liuu - i —— Had4
E d‘\ __.
T, -
~ B Hh'%'
i *qw-r
- i —
) SR m’“”i’m PR e L
0 50 1 00 150 200 250 300 350 400
\Myy [GeV]
|
myy
— Entries 3823
. lean 125.5
ATLAS Work in Progress StdDev 1537

0.6—

0.2

Sculpting seen is due to

t

he change of slope.

LHCP 2018, All Cathegories

-d JSD Check in Run2 NTI\-

JSD factors in %:
(Range 105 - 160 GeV)

Had 1: 8.1 £ 0.2

0.5

myy2
Entries 46701
ATLAS Work in Progress Mean 126.7
Std Dev 15.24

Had 2: 6.0 + 0.1
Had 3:3.6 £ 0.0

Had 4:2.4 £ 0.0
Lep 1: 2.8 0.6
Lep 2: 1.2 +0.6
Lep 3: 0.5+£0.7



% 3| Backup ¢ 3

. Scaled JSD Factors in MC / % |

ttyy, Tl, Hadronic

Had 1: 0.9 + 0.2
Had 2: 0.3 £+ 0.1
Had 3: 0.1+ 0.1
Had 4: 0.1+ 0.1

ttyy, Relax tight and

ttyy, Tl, Leptonic

Lep 1: 0.1+ 0.1
Lep 2: 0.1 0.1
Lep 3: 0.1 £ 0.1

No significant sculpting
observed in ttyy MC.

ttyy, Relax tight and

isolated criteria, All

Hadronic

Had 1: 1.4+ 0.1
Had 2: 0.4 + 0.1
Had 3:0.2 + 0.0
Had 4: 0.1 £ 0.0

isolated criteria,
Leptonic

Lep 1: 0.1 £ 0.1
Lep 2: 0.1 £0.1
Lep 3:0.1+0.1



classifier/input: InputLayer

input:

(None, 18)

output:

(None, 18)

l

2+ Backup @

classifier/batch_normalization_1: BatchNormalization

input:

(None, 18)

output:

(None, 18)

I

classifier/dense_1: Dense

input:

(None, 18)

output:

(None, 64)

)

input: | (None, 64)
classifier/batch_normalization_2: BatchNormalization
output: | (None, 64)
input: | (None, 64)
classifier/dense_2: Dense
output: | (None, 64)
" o o input: | (None, 64)
classifier/batch_normalization_3: BatchNormalization
output: | (None, 64)
input: | (None, 64)
classifier/dense_3: Dense
output: | (None, 64)
input: | (None, 64)
classifier/output: Dense
output: [ (None, I)

0.
S /.
@

S
k> S
HoAN

BacI), Classifier Ilodel

BatchNormalization layer:
standardise the variables from the
preceding layer (scales them so
they have a mean of 0 and SD = 1.

Dense layer: there exists a
connection between every node in
the previous layer and every node
in the current layer.

If the previous layer has M nodes,
and the current layer has N nodes,
the weight matrix has dimensions
M x N, and every entry is trainable.
If any node = 0 (no existing
connection) -> a sparsely
connected layer.



- Backup -

Ba-Adversa r.del

input: | (None, 1)

adversary/input_pt: InputLayer

output: | (None, 1)

input: one, | input: one, 1)
lambda_1: Lambda P a ) adversary/input_clf: InputLayer P @
output: | (None, 1) output: | (None, 1)

\ /

input: | [(None, 1), (None, 1)]
output: (None, 2)

) ,
adversary/cc Cc

input: (None, 2)

adversary/dense_4: Dense

output: | (None, 64)

/ \

input: | (None, 64) input: | (None, 64) input: | (None, 64) input: | (None, 1)
adversary/coeffs: Dense adversary/means_1: Dense adversary/widths_1: Dense adversary/input_par: InputLayer
output: | (None, 20) output: | (None, 20) output: | (None, 20) output: | (None, I)

input: | [(None, 20), (None, 20), (None, 20), (None, 1)]
output: (None, 1)

adversary/output: PosteriorLayer




Backup @

dversarial Neural Networks
Mathematical prospective
Classifier Adversary
ecll eadv
X0 @ o
Cost function of classifier Ls5,8,16,] Cost function of adversary
m ‘ — 1 - —
L %[Z y® log ho(z®) + (1 — y@) log(1 — hg(z™))] Jado( 0 atw) = =—[3 Y 108 Pado (Myo|0adv, Jets( 6 cis), @)]
i=1 =1

where m is the number of iterations for finding the minima of the cost
function, @ the weights/parameters, which are updated after each iteration,
h(@) the hypothesis function, yi the current calculating of the function at
iteration j and a represents any auxiliary inputs to the adversary

Balance between them to be achieved: ming , maxg,, JaANN = Jeis(0cis) — AMado(Oadves)



Backup

yperparameter

1073

Learning rate [107>,1071] log
Learning rate decay [107¢, 107?] log 107°
Hidden layers 1, 6] linear 4
Nodes per hidden [2,512] log 2 512
layer
Dropout [0, 0.5] linear 0.3
regularization
choice RELU

Hidden layer
activation function

{RELU, tanh}




clf

Cross-val. optimisation metric, L**

3 o Backup
-yperparameter O_L
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. ATLAS Simulation Internal i 3 - ATLAS Simulation Internal [
08 Vs=#3TeV ¢+ Evaluations — * 4000~ Vs=13TeV ¢+ Evaluations |
j Neut# network (NN) clabsifier -=-Bestresult - %\»" Adversarial neural network (ANN) -=- Best result

% ~| 4 } A l . & classifier
i . — b - -
. . [} Q
0.6 - -~ + = € i Uil
H o, L ] N S L
He ¢ * : § 2000 - —
l + - E |
= ’
04 e } ? ] 8' 'Y
- ® b - -—
L } o | g;
i { . 8
I | - 1. ot T e ﬁ’. g‘%’ - 8 0 :
Oy a0 &0 80 100 0 20 40 60 80 100 120 140 160

Bayesian optimisation step

Bayesian optimisation step




data

cormn So far:
= correlations

160(

g

140(
1200

"o Definite positive correlation of the

o transverse momentum of both
4000 photons with myy

200(

800(

BESE | el WA o

100 110 120 130 140 150
Reminder: Correlation factor: 0.271 My

A'II'LAS Worlk in Progrless

PRt Yt 0
100 120 140

Correlation

* Correlations of classifier input &
variables with myy lead to
background sculpting and we’ll
train the second NN to avoid tis.

80 9 95 100 105 110 115 120
40 .
My Correlation factor: 0.358 My




Backup

So far: M2, =2 Ey; E,,(1- cos9)
correlations

%0 90 100 110 120 130 140 150

[ ]
140

o 90 100

110 120 130 150

Correlation factor: 0.097 Correlation factor: 0.221 Correlation factor: 0.284 i

““

-0.006 -0.001 0.005 0.002 0.271 0.358 0.284 0.097 0.221

Positive correlation: relationship between two variables in



