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Physics Motivation for ttH(yy)
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• SM ttH cross section: σ = 0.507 pb
• SM H→γγ branching ration: 𝑩γγ = 2.27x𝟏𝟎!𝟑

• Very high signal purity and fully reconstructable
invariant mass

• High photon reconstruction and isolation 
efficiency due to the high resolution of the 
ATLAS electromagnetic calorimeter

• Backgrounds determined in fit of 𝑀## side-
bands with 1-parameter function 

𝑀!!

http://cds.cern.ch/record/2668103/files/ATLAS-CONF-2019-004.pdf

We need to measure it as accurately as possible, in order 
to unravel the mysteries of the new fundamental Top 
quark – Higgs boson interaction discovered in 2018. 
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• Photons: reconstructed from calorimeter 
clusters formed using a dynamical, topological 
cell clustering based algorithm, selection 
requires ≥ 2, where the photons with highest 
𝑝$ are selected as candidates for the 
diphoton system 

• Jets: reconstructed using anti-𝐾$ algorithm

• BDT used to reconstruct top decays and 
define event categories

or

Reconstruction and Event Selection
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Simulated MC data with 
• 105 – 160 GeV mass range for 𝑀##

• Signal ttH :                                                           Background ttyy: 

NTNI (non tight, non isolated photons) data as an approximation of background with Full Run2 
dataset, all analysis cuts + # of jets ⪆ 3
• Tight refers to identification requirement, which accounts for photon shape in the calorimeter. 

Tight is used for when calorimeter assigns higher degree of confidence that this is a prompt 
photon, loose for smaller confidence 

• Isolated refers to hadronic activity (tracks, calorimeter signals) around a photon. It is used to 
separate QCD jet from photons , QCD jets have a lot of activity, prompt photons have little

• TI (tight, isolated photons) is used for extracting final result (best approximation to signal)

Data and Simulated Samples
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Problem

Rejecting background using photon kinematics could sculpt the 
background in case of correlations of the photon kinematics with M%%

4

Example of sculpting, which would prevent the
1-parameter function fit to the side-band 
where in our case blue integrated area 
distribution could be the signal, and red the 
background after background rejection .

The reason for the sculpting is the 
strong correlations between some of 
the photon kinematic variables with 
the M"" distribution. Example above is 
the leading photon’s distribution in 
NTNI data.



• X: data
• 𝜽𝒄𝒍𝒔. and 𝜽𝒂𝒅𝒗.: weights parametrizing 

classifier and adversary
• λ > 0: controls the performance of J

Idea

Classifier: trained to 
use the photon 
kinematic variables to 
reject the background 

Adversary: trained to 
decorrelate the 
variables from M""

• Solution: Adversarial Neural Networks
• Binary classifier function is trained using two neural networks with the idea to find the balance between 

minimizing loss function J*+, and maximizing J-./:

𝒎𝒊𝒏𝜽𝒄𝒍𝒔.𝒎𝒂𝒙𝜽𝒂𝒅𝒗.𝑱𝑭𝒊𝒏𝒂𝒍𝑪𝒍𝒂𝒔𝒔𝒊𝒇𝒊𝒆𝒓 = 𝑱𝒄𝒍𝒔(𝜽𝒄𝒍𝒔.) - λ 𝑱𝒂𝒅𝒗(𝜽𝒄𝒍𝒔.𝜽𝒂𝒅𝒗.)
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Neural Networks

How the idea was born Implementation in ML The complex dynamic of 
two neural networks

Ø Neurons in the brain carry 
information by transmitting 
electrical impulses (signals) and 
have three basic parts: a cell body, 
an axon and dendrites 

Ø The dendrites receive information 
(input), the nucleus processes the 
received information and the axon 
sends the processed information to 
other neurons (output).

Ø A neural network in ML is a 
collection of units (neurons), 
which transmit and process 
information

Ø Hypothesis function h(x) : 

where Θ are the weights of the cost function

Ø Cost function:

Ø Adversarial Neural Networks
Ø Find best balance between 

using the photon kinematic 
variables for further 
background rejection and 
fixing the problem which 
comes from that, by de-
correlating those variables 
from 𝑴𝜸𝜸
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How do we quantify sculpting?



Variable Ranking

8

Variables used for training:
• 𝒑𝑻, E, η, ɸ, 𝚫ɸ, 𝚫η and 𝚫R of the leading and sub-leading photons
• 𝒑𝑻, E, η, ɸ of leading, sub-leading and third jets

ATLAS, Work in Progress ATLAS, Work in Progress



Simulated Samples, Results
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1) classifier accuracy:  90.1 %
2) classifier accuracy in signal: 94.5 %
3) classifier accuracy in background:  85.6 %
--------------
4) ANN accuracy: 60.5%
5) ANN accuracy in signal:  66.8%
6) ANN accuracy in background: 54.3%
ROC = 67.0 %
𝑱𝑺𝑫 𝟏𝟎𝟓$𝟏𝟔𝟎 𝑮𝒆𝑽 = (0.04 ± 0.01) %
𝑱𝑺𝑫 𝟏𝟐𝟎$𝟏𝟑𝟎 𝑮𝒆𝑽 = (0.04 ± 0.04) %

ATLAS, Work in Progress

ATLAS, Work in Progress

ATLAS, Work in Progress

λ = 25

Sculpting 
minimized! 



Simulated Samples Results, Fitting

10

Initial with first order exponential:
:(

;<=
= 0.76

prob =  82%
ANN with first order exponential:
𝝌𝟐

𝒏𝒅𝒇
= 1.95

prob =  2%

ATLAS, Work in Progress

𝝌𝟐

𝒏𝒅𝒇
-> goodness of fit

prob -> probability that the values are 

independent, or significance of :
(

;<=

Fitting the M"" distribution after ANN 
training  shows a good agreement 
with an exponential of first order.

Overall, the sculpting in simulated data was 
removed, while keeping efficiency optimal 

and modeling simple.



NTNI Data, Results

11

1) classifier accuracy: 95.2 %
2) classifier accuracy in signal: 96.1 %
3) classifier accuracy in background:  94.3 %
---------
4) ANN accuracy: 83.4 %
5) ANN accuracy in signal: 95.7 %
6) ANN accuracy in background: 71.1 %
ROC = 0.94
𝑱𝑺𝑫 𝟏𝟎𝟓$𝟏𝟔𝟎 𝑮𝒆𝑽 = (1.14 ± 0.01) %
𝑱𝑺𝑫 𝟏𝟐𝟎$𝟏𝟑𝟎 𝑮𝒆𝑽 = (0.05 ± 0.01) %

ATLAS, Work in Progress

ATLAS, Work in Progress

ATLAS, Work in Progress

λ = 2500

Sculpting 
minimized! 



NTNI Data Results, Fitting
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Initial with first order exponential:
:(

;<=
= 3.32

ANN with first order exponential:
𝝌𝟐

𝒏𝒅𝒇
= 2.84

ATLAS, Work in Progress

Fitting the M"" distribution after ANN 
training  shows a similar agreement 
to the initial distribution with an 
exponential of second order.

Overall, the sculpting in real NTNI data was 
also removed, while keeping efficiency 

excellent and modeling simple.



Conclusions and Next Steps

Ø Rejecting background using photon kinematics sculpts the background due to correlations of the 
photon kinematics with M""

Ø An adversarial neural network platform was proposed and adapted for the purpose of rejecting 
background events with maximum efficiency in the ttH(γγ) channel while dealing with the problem of 
sculpting.

Ø Significant reduction of the sculpting observed in MC and Data, while efficiencies are kept optimal.
Ø We are a step closer to better constrains on the top-Higgs Yukawa coupling, whose precise 

measurement could be a doorway towards exciting new physics.

Conclusions

Next Steps
Ø Improve the background sculpting tests
Ø Improve the sensitivity with feature engineering
Ø Determine the optimal event categorization, which yields the optimal sensitivity
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