Combining di-Higgs decay channels to set limits on the di-Higgs crosssection with the ATLAS experiment

Natasha Hehir ATLAS HH combination team

Introduction to di-Higgs Combination

- Since the discovery of the Higgs boson in 2012, the measurement of its couplings to other SM particles has become one of the main goal of the LHC
- One particular parameter of interest is the Higgs trilinear self-coupling, λ_3
- Measuring di-Higgs production allows the extraction of λ_3 , and provides a probe into the accuracy of the SM or whether there are beyond SM physics present

Introduction to di-Higgs Combination

Goals of the HH combination:

Combine several di-Higgs analyses performed in different decay channels and different production modes in order to:

- set an upper limit on the overall di-Higgs production cross section (ggF + VBF)
- set constraints on Higgs couplings ($\kappa_\lambda,\kappa_t,c_{2V},c_V)$ and EFT benchmarks
- search for new physics in the form of new heavy resonances

di-Higgs Production: ggF

di-Higgs Production: VBF

 VBF production cross section and kinematics depend on the VVHH (c_{2V}), VVH (c_V) and the HHH (κ_λ) couplings SM cross section: 1.73 fb at $\sqrt{s} = 13$ TeV. ~ 17 times smaller than ggF.

• $c_{2V} = c_v = 1$ if Standard Model

di-Higgs Production: Resonant

- HH production can be used to search for new physics
- New matter which modifies the Higgs self-coupling and enhances the HH cross section:

$$\frac{\sigma}{\sigma_{SM}} > 1$$

X = New Particle

Examples:

H

H

- Spin 0 particle: X = S, S is a new scalar particle
- Spin 2 particle: X = G, Randall-Sundrum graviton
- Different models and different X masses allows for different sizes of enhancement to the cross section

di-Higgs Combination: Input Analyses

The full Run 2 di-Higgs analyses are performed in 6 channels:

- bbbb
- bbττ
- bbγγ
- bbll covering bbVV, bbττ and bbZZ decays in 2 leptonic final states.
- bbVV 1 lepton and 0 lepton.
- multilepton covers all other decay channels

		bb	ww	π	ZZ	ŶŶ
ys	bb	33%				
	ww	25%	4.6%			
	π	7.4%	2.5%	0.39%		
	ZZ	3.1%	1.2%	0.34%	0.076%	
	YY	0.26%	0.10%	0.029%	0.013%	0.0005%

di-Higgs Combination: Input Analyses

Non-resonant combination:

- Combine all contributing channels for SM cross section limit (taking into account ggF and VBF)
- Combine most sensitive channels (bbbb, bb $\tau\tau$, bb $\gamma\gamma$, bbll?) for κ_{λ} scan
- Combine most sensitive channels for c_{2V} scan
- Combine HH with H for couplings constraints

Resonant combination:

- Combine most sensitive channels for ggF X → HH search (bbbb, bbττ, bbγγ, bbll?)
- Combine $ggF X \rightarrow HH$ with Heavy Resonance combination

di-Higgs Combination: Orthogonality Checks

- Most analyses are orthogonal by definition, few exceptions may still exist and need to be checked:
 - Check cross channels that enter the HH combination
 - Checks between single Higgs and HH channels
 - Checks with the Heavy resonance combination

- Several checks already completed and show healthy results between HH channels
- Overlap studies are now starting within single Higgs analyses

di-Higgs Combination: Preparation and Preliminary Results

- **Preliminary** expected limits set on the HH production cross-section assuming $\kappa_{\lambda} =$, 1, combining bbbb, bbtt and bbyy
- Further improvements expected from analyses improvements which are being investigated and implemented
- Will also include bbll, bbVV and multilepton
- These limits are updated along side the individual analyses – these are not final expected limits

36 fb⁻¹ result: 6.9 obs, 10 exp

arxiv:1906.02025

Natasha Hehir

di-Higgs Combination: Preparation and Preliminary Results

- **Preliminary** resonant expected upper limits for ggF spin 0, σ (pp \rightarrow X \rightarrow HH)
- Limits set on the HH production cross section as a function of the resonance mass X in the hypothesis of a narrow width scalar produced via ggF
- Combined bbbb, bbττ, bbγγ in region 251 1000 GeV. bbbb and bbττ only in 1000 – 1600 GeV mass range. bbbb only between 1600 – 5000 GeV mass range
- These limits are updated along side the individual analyses

Natasha Hehir

Future Plans: Resonant Combination

- Plan to combine HH channels with Heavy Resonance Combination for resonant searches
- Spin-0 Radion: HH BR in 300 GeV 500 GeV is dominant and > 500 GeV above is comparable to WW/ZZ
- Spin-2 Graviton: HH BR above 1 TeV comparable to ZZ

Future Plans: Non Resonant Combination

Plan to combine again HH and H analyses when individual combinations with full Run 2 data are ready:

• κ_{λ} can be extracted in HH at LO and H at NLO EW

- Set more stringent constraints on κ_λ assuming other Higgs couplings take their SM values
- Set constraints on κ_λ and c_{2V} with less assumptions on the other Higgs couplings that can be constrained by the single-Higgs analysis

ATLAS-CONF-2019-049

Natasha Hehir

- By combining di-Higgs decay channels, we can set further constraints on the di-Higgs cross-section for both non-resonant and resonant searches using the full Run 2 data from the ATLAS experiment
- Continue to update and investigate combined workspaces as updates become available from individual channels
- Future plans to combine the di-Higgs channels with single-Higgs channels for further constraints on κ_{λ} and to combine di-Higgs with Heavy Resonance combination

BACK – UP

Natasha Hehir

Future Plans: Non Resonant Combination

Started investigating possible EFT interpretation in HH, investigating both:

- HEFT (non-linear, Higgs field is an EW singlet, non SM-like, in chiral Lagrangian)
 Benchmark points presented in <u>JHEP04(2016)126</u> and already used by CMS and investigated for LO.
 - Reweighting in m_{HH} and $\cos\theta^*$ based on the parameterisation in <u>arxiv:1710.08261</u> being implemented, method checked against old reweighting method for κ_{λ} when turning off all other coefficients (enough to reweight in m_{HH}).
 - Now possible to do EFT interpretations at NLO.
- **SMEFT** (linear, respects the SM symmetries where the Higgs is an SU(2) doublet)

- Starting generating distributions with different SM EFT parameters using the model SMEFTatNLO and studying effects on HH kinematic (1D and 2D scans to investigate correlations).

Joint APP, HEPP and NP Conference 2021

Plan to also include VBF κ_{λ} and c_{2V} variations and as well as EFT couplings variations.

Natasha Hehir Joi

Reweighting method in place for ggF κ_{λ} variations

di-Higgs Combination: Non Resonant Signal Reweighting

0.009

0.008

- ♦ For the couplings scans, analyses need simulations for many couplings values;
 computationally expensive → reweight from SM samples.
- $\Leftrightarrow \text{ For } \kappa_{\lambda} \text{ scan:}$

 \diamond

1. Generate truth m_{HH} distributions for κ_{λ} =0, 1, 10, 20

2. Obtain general κ_{λ} distribution from 3 generated distributions ($\kappa_{\lambda} = 0, 1, 20$) from $\frac{d\sigma}{dm_{HH}}(m_{HH}) = A(m_{HH}) + B(m_{HH})\kappa_{\lambda} + C(m_{HH})\kappa_{\lambda}^{2}$

3. Weights evaluated as ratio of two m_{HH} histograms.

analyses to apply the weights.

4. Central re-weighting tool to be used by all

 $\kappa_1 = 20$ 0.007 60000 $- \operatorname{Calc} \kappa_{2} = 0$ 0.006 Actual k₂=0 0.005 50000 0.004 40000 0.003 30000 0.002 0.001 20000 200 300 400 500 600 700 800 900 1000 m(HH) [GeV] 100 10000

ATLAS work in progress

 $-\kappa_{\lambda}=0$ $-\kappa_{\lambda}=1$

 $\kappa_1 = 10$

70000

Michael Hank

ATLAS work in progress

17

900 1000

m(HH) [GeV]

800

700

Previous Results: Non Resonant

arxiv:1906.02025

Natasha Hehir

Previous Results: Non Resonant

arxiv:1906.02025

Natasha Hehir

arxiv:1906.02025

Natasha Hehir

arxiv:1906.02025

Exclusion limits were presented also as constraints on the hMSSM and EWK-singlet models. Excluded regions for the EWK-singlet model in the plane mS–sin α for for tan β = 1 and for tan β = 2:

arxiv:1906.02025

Exclusion limits were presented also as constraints on the hMSSM and EWK-singlet models. Excluded regions for the EWK-singlet model in the plane (sin α , tan β) for mS = 260 GeV and for the hMMSM model in the plane mA-tan β :

arxiv:1906.02025