Combining di-Higgs decay channels to set limits on the di-Higgs cross**section with the ATLAS experiment**

Natasha Hehir ATLAS HH combination team

Joint APP, HEPP and NP Conference 2021

Introduction to di-Higgs Combination

- Since the discovery of the Higgs boson in 2012, the measurement of its couplings to other SM particles has become one of the main goal of the LHC
- One particular parameter of interest is the Higgs trilinear self-coupling, λ_3
- Measuring di-Higgs production allows the extraction of λ_3 , and provides a probe into the accuracy of the SM or whether there are beyond SM physics present

Introduction to di-Higgs Combination

Goals of the HH combination:

Combine several di-Higgs analyses performed in different decay channels and different production modes in order to:

- set an upper limit on the overall di-Higgs production cross section $(ggF + VBF)$
- set constraints on Higgs couplings $(\kappa_{\lambda}, \kappa_{t}, c_{2V}, c_{V})$ and EFT benchmarks
- search for new physics in the form of new heavy resonances

di-Higgs Production: ggF

di-Higgs Production: VBF

• VBF production cross section and kinematics depend on the VVHH (c_{2V}) , VVH (c_v) and the HHH (κ_λ) couplings

SM cross section: 1.73 fb at $\sqrt{s} = 13$ TeV. \sim 17 times smaller than ggF.

• $c_{2V} = c_v = 1$ if Standard Model

di-Higgs Production: Resonant

- HH production can be used to search for new physics
- New matter which modifies the Higgs self-coupling and enhances the HH cross section:

$$
\frac{\sigma}{\sigma_{SM}} > 1
$$

 $X = New Particle$

Examples:

H

 \cdot H

- Spin 0 particle: $X = S$, S is a new scalar particle
- Spin 2 particle: $X = G$, Randall-Sundrum graviton
- Different models and different X masses allows for different sizes of enhancement to the cross section

di-Higgs Combination: Input Analyses

The full Run 2 di-Higgs analyses are performed in 6 channels:

- bbbb
- bbττ
- bbγγ
- bbll covering bbVV, bbττ and bbZZ decay in 2 leptonic final states.
- bbVV 1 lepton and 0 lepton.
- multilepton covers all other decay channels

di-Higgs Combination: Input Analyses

Non-resonant combination:

- Combine all contributing channels for SM cross section limit (taking into account ggF and VBF)
- Combine most sensitive channels (bbbb, bb $\tau\tau$, bbyy, bbll?) for κ_{λ} scan
- Combine most sensitive channels for c_{2V} scan
- Combine HH with H for couplings constraints

Resonant combination:

- Combine most sensitive channels for $ggF X \rightarrow HH$ search (bbbb, bb $\tau\tau$, bbyy, bbll?)
- Combine $ggF X \rightarrow HH$ with Heavy Resonance combination

di-Higgs Combination: Orthogonality Checks

- Most analyses are orthogonal by definition, few exceptions may still exist and need to be checked:
	- Check cross channels that enter the HH combination
	- Checks between single Higgs and HH channels
	- Checks with the Heavy resonance combination

- Several checks already completed and show healthy results between HH channels
- Overlap studies are now starting within single Higgs analyses

di-Higgs Combination: Preparation area

Natasha Hehir 100 Matasha Hehir 100 Matasha Hehir 1021

di-Higgs Combination: Preparation and Preliminary Results

- **Preliminary** resonant expected upper limits for ggF spin 0, σ (pp \rightarrow X \rightarrow HH)
- Limits set on the HH production cross section as a function of the resonance mass X in the hypothesis of a narrow width scalar produced via ggF
- Combined bbbb, bbττ, bbγγ in region 251 1000 GeV. bbbb and bbττ only in 1000 – 1600 GeV mass range. bbbb only between 1600 – 5000 GeV mass range
- These limits are updated along side the individual analyses

Natasha Hehir 11 Joint APP, HEPP and NP Conference 2021

Future Plans: Resonant Combination

- Plan to combine HH channels with Heavy Resonance Combination for resonant searches
- Spin-0 Radion: HH BR in 300 GeV 500 GeV is dominant and > 500 GeV above is comparable to WW/ZZ
- Spin-2 Graviton: HH BR above 1 TeV comparable to ZZ

Future Plans: Non Resonant Combin

Plan to combine again HH and H analyses when individual combinati

 κ_{λ} can be extracted in HH at LO and H at NLO EW

- Set more stringent constraints on κ_{λ} assuming other Higgs couplings take their SM values
- Set constraints on κ_{λ} and c_{2V} with less assumptions on the other Higgs couplings that can be constrained by the single-Higgs analysis

- By combining di-Higgs decay channels, we can set further constraints on the di-Higgs cross-section for both non-resonant and resonant searches using the full Run 2 data from the ATLAS experiment
- Continue to update and investigate combined workspaces as updates become available from individual channels
- Future plans to combine the di-Higgs channels with single-Higgs channels for further constraints on κ_{λ} and to combine di-Higgs with Heavy Resonance combination

BACK – UP

Natasha Hehir 15 Joint APP, HEPP and NP Conference 2021

Future Plans: Non Resonant Combin

Started investigating possible EFT interpretation in HH, investigating both:

HEFT (non-linear, Higgs field is an EW singlet, non SM-like, in chiral Lagran

- Benchmark points presented in JHEP04(2016)126 and already used by CMS a investigated for LO.

- Reweighting in m_{HH} and cos θ^* based on the parameterisation in $\frac{arxiv:1710.08}{2}$ being implemented, method checked against old reweighting method for κ_{λ} v turning off all other coefficients (enough to reweight in m_{HH}).

- Now possible to do EFT interpretations at NLO.

SMEFT (linear, respects the SM symmetries where the Higgs is an SU(2) d

- Starting generating distributions with different SM EFT parameters using the on HH kinematic (1D and 2D scans to investigate correlations).

Natasha Hehir 17 Joint APP, HEPP and NP Conference 2021

di-Higgs Combination: Non Resonant Signal Reweighting

- \diamond For the couplings scans, analyses need simulations for many couplings values; computationally expensive \rightarrow reweight from SM samples.
- \diamond For κ_{λ} scan:
	- **1.** Generate truth m_{HH} distributions for $\kappa_{\lambda} = 0, 1, 10, 20$

2. Obtain general κ_{λ} distribution from 3 generated distributions (κ_{λ} =0, 1, 20) from $d\sigma$ $\frac{uo}{dm_{HH}}(m_{HH}) = A(m_{HH}) + B(m_{HH})\kappa_{\lambda} + C(m_{HH})\kappa_{\lambda}^{2}$

- **3.** Weights evaluated as ratio of two m_{HH} histograms.
- **4.** Central re-weighting tool to be used by all analyses to apply the weights.
- \Diamond Reweighting method in place for ggF κ_{λ} variations Plan to also include VBF κ_{λ} and c_{2V} variations and as well as EFT couplings variations.

Previous Results: Non Resonant

arxiv:1906.02025

Natasha Hehir 1886 1886 1886 1886 1886 1886 1886 1886 1886 1886 1886 1886 1886 1886 1886

Previous Results: Non Resonant

arxiv:1906.02025

arxiv:1906.02025

Natasha Hehir 2021 Joint APP, HEPP and NP Conference 20

arxiv:1906.02025

Natasha Hehir 2021 Joint APP, HEPP and NP Conference 2021

Exclusion limits were presented also as constraints on the hMSSM and Excluded regions for the EWK-singlet model in the plane mS-sin α for

arxiv:1906.02025

Natasha Hehir 2022 Joint APP, HEPP and NP Conference 202

Exclusion limits were presented also as constraints on the hMSSM and Excluded regions for the EWK-singlet model in the plane (sin α , tan β) model in the plane mA-tan β :

arxiv:1906.02025