Measurements of W^+W^- production cross sections at $\sqrt{s} = 13$ TeV with the ATLAS detector

Jack C. MacDonald

IOP Joint APP, HEPP and NP Conference 12-15th April 2021, Online

The University Of Sheffield.

Introduction

- WW measurements provide precision tests of Standard Model (SM)
 - Sensitive to properties of gauge boson self-interactions
 - Test of perturbative quantum chromodynamics (pQCD) and electroweak (EW) theory
- Important background for H → WW measurements and BSM searches
- Previous WW measurements at the LHC:

• All limit number of hadronic jets to reduce backgrounds

Most recent ATLAS measurement inclusive over jets \rightarrow focus of this talk2021

ATLAS detector and reconstruction

Paper: arXiv:2103.10319

Motivation

- Jet-inclusive differential measurements made for first time at LHC
- Improved precision in fully inclusive measurement (when combined with jet veto measurement)
- Improved sensitivity to BSM physics
 - Effective field theory (EFT) interference term less helicity suppressed than in jet veto case
- Analysis strategy
- Count $pp \rightarrow ev\mu v$ (+ jets) events
 - Data binned in 12 observables*
- Estimate backgrounds
 - Dominant contribution from $t\bar{t}$ events \rightarrow estimate with data-driven method
 - Fakes (data-driven), Z+jets, diboson, Vγ
- Unfolded result = detector ⁻¹ (data backgrounds)

Event selection

Top estimate ($t\bar{t} + Wt$)

► Top events account for ~61% of events in signal region (SR)

→ arXiv:1910.08819

University Of Sheffield.

6/16

- Use data-driven 'b-tag counting' method inspired by $t\bar{t}$ cross-section measurement
- Two control regions (CRs) with different numbers of *tagged* b-jets

Top estimate ($t\bar{t} + Wt$)

validation

- Estimate strongly reduces systematic uncertainties: 15% (pure MC) $\rightarrow 2.8\%$
 - Anti-correlation between some $t\bar{t}$ and Wt systematics reduces total uncertainty
- Extensive closure tests performed
- Check estimate in top enriched validation region (VR): m_{lj} < 140 GeV, $\Delta \varphi_{e\mu} < \pi/2$ (+ SR)

7/16

Fake estimate

- Fake = jet misidentified as lepton / lepton from heavy flavour (HF) decay, e.g. W+jets (3%)
- Poorly modelled \rightarrow estimate contribution with data-driven fake factor (FF) method

Other backgrounds

- All remaining backgrounds estimated from simulation and validated in dedicated VRs
 - Account for ~3% of events in SR
 - Z+jets (Drell-Yan), VZ, Vγ
 - Triboson negligible (< 0.1% of selected events)

University Of Sheffield.

9/16

arXiv:2103.10319

Results

- Correct for detector effects using iterative Bayesian unfolding method D'Agostini, 95 arXiv:1010.0632
 - Unfolded results obtained for fiducial and differential cross sections
 - $\sigma_{fid} = 258 \pm 4 \text{ (stat.)} \pm 25 \text{ (syst.) fb}$
 - Total uncertainty of ~10% driven by jet calibration, top and fake contributions
- Excellent agreement seen with theoretical predictions

arXiv:2103.10319

Conclusions

- First WW jet-inclusive differential measurements performed at LHC
- ► **Reduction of uncertainties in dominant top background** using powerful data-driven *tt* estimate
- ► Fiducial and differential cross sections agree with theoretical predictions up to highest measured p_T and for up to 5 jets

Analysis team proceeding to look at WW + 0 jets

In near future combine results for high precision fully inclusive measurement

Backup

Top estimate $(t\bar{t})$

Number of $t\bar{t}$ events passing $e\mu$ selection:

$$N_{t\bar{t}} = \mathcal{L}\sigma_{t\bar{t}}\epsilon_{e\mu} - e\mu \text{ selection efficiency}$$

$$t\bar{t} \text{ (+jets) cross-section}$$

Number of tt events in CRs obtained from data (backgrounds estimated with MC)

$$N_{t\bar{t}}^{2b} = \mathcal{L}\sigma_{t\bar{t}}\epsilon_{e\mu} \cdot C_b\epsilon_b^2$$
$$N_{t\bar{t}}^{1b} = \mathcal{L}\sigma_{t\bar{t}}\epsilon_{e\mu} \cdot 2\epsilon_b \left(1 - C_b\epsilon_b\right)$$

 ϵ_b = efficiency to find and tag a *b*-jet ϵ_{bb} = efficiency to find and tag two *b*-jets $C_b = \epsilon_{bb}/\epsilon_b^2$ = correlation factor

• Solve for
$$\epsilon_b = \frac{2N_{t\bar{t}}^{2b}}{C_b \left(N_{t\bar{t}}^{1b} + 2N_{t\bar{t}}^{2b}\right)} \qquad \mathcal{L}\sigma_{t\bar{t}}\epsilon_{e\mu} = \frac{C_b}{4} \frac{\left(N_{t\bar{t}}^{1b} + 2N_{t\bar{t}}^{2b}\right)^2}{N_{t\bar{t}}^{2b}}$$

Obtain estimate in SR

$$N_{t\bar{t}}^{SR} = N_{t\bar{t}} - N_{t\bar{t}}^{1b} - N_{t\bar{t}}^{2b}$$
$$= \mathcal{L}\sigma_{t\bar{t}}\epsilon_{e\mu} \cdot \left(1 - 2\epsilon_b + C_b\epsilon_b^2\right)$$

$$\frac{N_{t\bar{t}}^{1b} + 2N_{t\bar{t}}^{2b})^2}{N_{t\bar{t}}^{2b}} - \frac{1}{N_{t\bar{t}}^{2b}} - \frac{1}{N_{t$$

Unfolding details

Optimise number of iterations to reduce prior bias and stat. fluctuations

Extra: EFT interpretation

- SM can be considered as EFT with additional dim. > 4 operators suppressed by some UV scale Λ
- Small scale EFT study: focus on dim. 6
 - Analysis sensitive to Q_W affecting gauge boson self-couplings \longrightarrow arXiv:1008.4884
 - Importance of SM+BSM interference term in cross section expected to increase with jet $p_{\rm T}$

Fitting and results

- Perform likelihood fits in dedicated *p*^{lead.jet} > 200 GeV region using (unfolded) *m*_{eµ} distribution
- Impact of quadratic term seen to reduce compared to p_T^{lead,jet} > 30 GeV (nominal SR) fit

 $\mathcal{L}_{\text{SMEFT}} = \mathcal{L}_{\text{SM}} + \sum_{i} \frac{c_i^{(a)}}{\Lambda^{d-4}} Q_i^{(d)}$

Looking to the future: fitting

- Performing profile likelihood fits to data in SR → alternative strategy to "cut-and-count" approach shown here
 - Use simulated signal and backgrounds on reconstruction-level, including effects of modelling and experimental systematic uncertainties
 - Extract signal (and background) normalisation as POI
- e.g. validation of top estimate (shown here) in $p_T^{\text{lead.lep.}}$ fit with μ_{WW} and μ_{Top} as POIs

