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The NOVA experiment

NOvVA = Neutrinos at the Main Injector(N) Off-axis(O) Electron Neutrino(v) _
. Ontario
Appearance(A) Experiment. o

NOVA A

Long baseline neutrino oscillation experiment
8 P Soudan\» P

* Uses Fermilab's NuMI neutrino beam :

 The Near Detector(ND) measures the beam at Fermilab

* The Far Detector observes the possibly oscillated beam \
at the 1%t oscillation peak, 810 km away
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* Gravitational wave/Supernova neutrinos
* Magnetic monopoles



The NOvVA Detectors

Near detector
e 96x96x 192 cells
* 4x4x12.7m

e 0.3kt

Far detector

e 8x8x60m
e 14 kt

* 384 x 384 x 896 cells
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Sms of data at the NOvVA Far Detector
Each pixel is one hit cell
Color shows digitized from the light
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" Several hundred cosmic rays crossed the detector
(the many peaks in the timing distribution below)



NOvVA Event Display
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NOVA Event Topologies

q (ADC)

Interaction types and individual
particles can be identified.

Let’s try it now!

Pixelated nature of the detector allows
for computer vision techniques to be
employed.
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NOVA Event Topologies

q (ADC)

Interaction types and individual
particles can be identified.

Let’s try it now!
* Top: v, Charged Current

* Middle: v,Charged Current

Pixelated nature of the detector allows
for computer vision techniques to be
employed.



NOVA Event Topologies

Interaction types and individual
particles can be identified.

Let’s try it now!

* Top: v, Charged Current

* Middle: v,Charged Current

* Bottom: Neutral current

Pixelated nature of the detector allows

for computer vision techniques to be
employed.



NOVA Convolutional Visual Network (CVN)

Uses 2 separate convolutional neural networks (CNN)
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HIDDEN LAYERS CLASSIFICATION

* 30% more exposure
* Included and used in published analysis (since 2016)

e Other architectures also employed.
(4-Branch, energy estimators)
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Aurisano et al., “A Convolutional Neural Network
Neutrino Event Classifier”, JINST 11, P09001 (2016).



Systematic Uncertainty

NOVA Preliminary
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Systematic Uncertainty

NOVA Preliminary
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Simplified simulated systematic

Detector Calibration

Neutron Uncertainty
Muon Energy Scale
Neutrino Cross Sections
Detector Response
Near-Far Differences
Normalization

Beam Flux

Total syst. error

Statistical error
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Statistical error
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Detector calibration contributes significantly

Affects the training data

Can be emulated by scaled brightness of pixelmaps
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Domain adaption: gradient reversal

Proposed in “Domain Adversarial

oL, ,
00y Loss Ly Training of Neural Networks”
; class label y (DANN)
2\ ’ , arxiv.org/pdf/1505.07818.pdf
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backprop (and produced derivatives)

Loss = Distance(model output — truth)

forwardprop

* Seeks to penalize any systematic dependent features of the
network through backpropagation.


https://arxiv.org/pdf/1505.07818.pdf

Domain adaption: gradient reversal

ROC Curves for non_ad, nc

Implemented the gradient reversal layer in the NOvA CVN keras
framework. (Tensorflow backend)

Initial stage look promising.
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Real systematic uncertainties

Working toward evaluation of the Calibration and Lightlevel systematics

Recent changes to the CVN architecture are problematic
* Switched from ResNet to a custom MobileNet
e Causes instability during training
(confined to the inclusion of the gradient reversal layer)
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Neutrino event generators

Other domains: Neutrino event generators

Uses different modeling to simulate the underlying interaction physics.
* NOVA employs GENIE
* Some other long baseline experiments employ GiBUU

Inclusive data — higher performance and robustness
Adversarial training — no additional improvement or robustness
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Summary

NOvA’s segmented detectors allow for Al reconstruction
Systematic uncertainties could pose a problem

Domain adaption techniques can be applied
Adversarial training through gradient reversal

Effective on fake systematics

Currently working towards evaluation of real systematics:
e Calibration & Lightlevel

Exploring applications on alternative domains



Physics overview

First measurement of muon-neutrino disappearance in

NOVA
NOVA SUpports a large variation in its phySiCS program FERMILAB-PUB-6-007-ND A Convolutional Neural Network Neutrino Event
March 2016 Classifier
 Neutrino oscillation measurements New constraints on oscillation parameters from v R
appearance and v,, disappearance in the NOVA )
1= experiment
. Observe (dls ) abpearante FERMILAB-PUB18-225-N0 First measurement of neutrino oscillation parameters
* Measurement of oscillation using neutrinos and antineutrinos by NOVA
parameters Measurement of Neutrino-Induced Neutrai R
; . . Coherent T° Production in the NOvA Near  June 2019
 Constraints on CP violation

Search for active-sterile neutrino mixing using neutral-
current interactions in NOVA

i Sterile Neutrino sea rCh Observation of seasonal variation of atmosk FERMILAS-PUB-IT-198-NE

multiple-muon events in the NOVA Near Def ..o 2017

Februarv 2019

Phys. Rev. D 99, 122004

e Supernova/gravitational wave neutrinos Apil 2019 Measurement of the neutrino mixing angle 8,3 in NOVA

Search for Multi-Messenger Sign  FERMILAB-PUB-17-019-ND
] with LIGO/Virgo Detections _

* Magnetic monopoles search April 2017

June 2020 Search for Slow Magnetic Monopoles with the NOVA
Detector on the Surface
Supernova neutrino detecti  reruiLas-pus-20-472-nc
And more can be found here FERMILAB-PUB-20-201-€ September 2020

May 2020


novaexperiment.fnal.gov/publications

Domain adaption: Learning to pivot(RW)

Add an adversarial network to a classifier.

 Throughout training it seeks to identify and penalize any Chsiner / z
features which have a dependency on a nuisance x / N [ oo
parameter. ) Lo e | |muopent

* Will reduce classifier performance, however due to the 7 ' R % 9
gained robustness overall significance increases. T T o ;U:('Z'iw

L Ly(By) Or Lr(0f,0r)

Proposed in “Learning to Pivot with Adversarial Networks”

Approximate median significance

* Recreated the papers results, looked promising. o —2-iom

However implementing on the NOVA CVN lead to repeated
mode collapse.

AMS
S

* Could be due to small size of the systematic, or the 1
performance of the CVN itself. R

3 6
threshold on f{x) threshold on f(X)

arxiv.org/pdf/1611.01046.pdf



https://arxiv.org/pdf/1611.01046.pdf

