

The first angular analysis of the $B^+ \to \pi^+ \mu^- \mu^+$ decay using Run I and Run II data at the LHCb experiment

Maria Flavia Cicala University of Warwick On behalf of the LHCb Collaboration

IOP Joint APP, HEPP and NP Conference April 2021

 Flavour-Changing Neutral Current B decays are suppressed in the SM as they can only occur at loop level

- Because of their suppression in the SM, rare B decays are a good probe for New Physics
- A deviation from SM predictions in rare B decays could be evidence of New Physics

• Processes are described using an Effective field theory $(M_b \ll M_W)$:

$$\mathcal{H}_{eff} = \frac{G_F}{\sqrt{2}} \sum_i V^i_{CKM} C_i \mathcal{O}_i$$

 C_i = Wilson coefficients related to

$$\mathcal{O}_i = \text{Local operators}$$

• Processes are described using an Effective field theory $(M_b \ll M_W)$:

1+

Processes are described using an Effective field theory $(M_h \ll M_W)$: lacksquare

$$\mathcal{H}_{eff} = \frac{G_F}{\sqrt{2}} \sum_i V^i_{CKM} C_i \mathcal{O}_i$$

 $C_9 \longrightarrow$ vector current $C_{10} \longrightarrow$ axial vector current

- Tension between measurements • and SM predictions in the latest global fit.
- Measurements prefer NP contributions to the C_9 and C_{10} coefficients

 $C_i =$ Wilson coefficients related to

$$\mathcal{O}_i = \text{Local operators}$$

IOP - APP, HEPP and NP Conference

Flavour anomalies in $b \rightarrow sl^+l^-$ processes

• Flavour anomalies observed consistently in $b \rightarrow s l^+ l^-$ transitions

• Decay rate measurements lower than theory predictions at low $q^2(=m_{ll}^2)$.

• Angular analyses of $B^0 \to K^{*0}\mu^+\mu^$ and $B^+ \to K^{*+}\mu^+\mu^-$ measured a combination of angular observables finding a ~ 3σ tension with SM predictions.

 $B^+ \rightarrow \pi^+ \mu^- \mu^+$ decay

 $B^+ \rightarrow \pi^+ \mu^- \mu^+$ is a FCNC process not allowed at tree-level in SM

 $b \rightarrow dl^+ l^-$ transitions are further CKM-suppressed by $|V_{tb}/V_{td}|^2$ in the SM

$$\frac{\Gamma(b \to dl^+ l^-)}{\Gamma(b \to sl^+ l^-)} \sim \frac{1}{25}$$

JHEP10(2015)034]

$$\frac{1}{\Gamma} \frac{\mathrm{d}\Gamma(B \to Kl^+l^-)}{\mathrm{d}\cos\theta_l} = \frac{3}{4}(1 - F_H)(1 - \cos^2\theta_l) + \frac{1}{2}F_H + A_{FB}\cos\theta_l$$

- θ_l = angle between the direction of l^+ and that of π in the l^+l^- rest-frame
- $F_{\rm H}$ = the fractional contribution of scalar, pseudo-scalar and tensor amplitudes
- A_{FB} = the forward-backward asymmetry of the dilepton system.

In the SM: $F_{\rm H} = 0$ and $A_{\rm FB} \sim 0$. [JHEP05(2014)082]

LHCb Detector

• The detector is a single - arm forward spectrometer at CERN

[Image provided by <u>CERN]</u>

LHCb Detector

- The detector is a single arm forward spectrometer at CERN
- CoM energy at the LHC of 7, 8 and 13 TeV
- At 13 TeV LHCb provides a $b\overline{b}$ cross-section production of 500 $\mu{\rm b},\,24\,\%$ of pairs inside the detector acceptance

[JINST 3 (2008) S08005]

IOP - APP, HEPP and NP Conference

5m

10m

- 5m

у

5m

April 2021

20m

10

15m

LHCb Detector

- The detector is a single arm forward spectrometer at CERN
- CoM energy at the LHC of 7, 8 and 13 TeV
- At 13 TeV LHCb provides a $b\overline{b}$ cross-section production of 500 $\mu{\rm b},\,24\,\%$ of pairs inside the detector acceptance
- Excellent invariant mass ~22 MeV/c² for 2body B decays and vertex (15 +29/pT[GeV]) µm resolution

[JINST 3 (2008) S08005]

 RICH system PID typical performance between 2 and 100 GeV/c:

 $\epsilon({\rm K}
ightarrow {\rm K}) \sim 95~\%$

 $\epsilon(\pi \rightarrow \mathrm{K}) \sim 5 \%$

IOP - APP, HEPP and NP Conference

 $^+ \rightarrow \pi^+ \mu^- \mu^+$ at LHCb

- <u>First measurement</u>: differential branching fraction and CP asymmetry, using LHCb Run I data
- Found 28.8 and 24.1 signal decays for the (1.1, 6.0) GeV/ c^4 and (15.0, 22.0) GeV/ $c^4 q^2$ regions

- Differential BF analysis using Run I+II datasets is on the way
 - Expecting 95 and 80 signal decays for the low and high q^2 regions from Run I+II datasets

• Combinatorial

Combinatorial
 Modelled using an exponential function

- Combinatorial
- Partially reconstructed:
 - $B^0 \to K^{*0} \mu^- \mu^+$ $K^{*0} \to K \pi$
 - $B^0 \rightarrow \rho \mu^- \mu^+$
 - $B_s^0 \rightarrow f_0 \mu^- \mu^+$
- where:

$$f_0 \to \pi \pi$$

 $\rho \to \pi \pi$

and a hadron is not reconstructed

• $B^+ \to \rho^+ \mu^- \mu^+$ $\rho^+ \to \pi \pi$

Maria Flavia Cicala (UoW)

Modelled using an exponential function

- Combinatorial
- Partially reconstructed:
 - $B^0 \rightarrow K^{*0} \mu^- \mu^+$
 - $B^0 \rightarrow \rho \mu^- \mu^+$
 - $B_s^0 \to f_0 \mu^- \mu^+$
 - $B^+ \rightarrow \rho^+ \mu^- \mu^+$

- Modelled using an exponential function
- Modelled using ARGUS functions

- Combinatorial
- Partially reconstructed:
 - $B^0 \rightarrow K^{*0} \mu^- \mu^+$
 - $B^0 \rightarrow \rho \mu^- \mu^+$
 - $B_s^0 \to f_0 \mu^- \mu^+$
 - $B^+ \rightarrow \rho^+ \mu^- \mu^+$

- Modelled using an exponential function
- Modelled using ARGUS functions

- Mis-reconstructed:
 - $B^+ \to K^+ \mu^- \mu^+$ where $K^+ \to \pi^+$ mis-ID takes place

- Combinatorial
- Partially reconstructed:
 - $B^0 \to K^{*0} \mu^- \mu^+$
 - $B^0 \rightarrow \rho \mu^- \mu^+$
 - $B_s^0 \to f_0 \mu^- \mu^+$
 - $B^+ \rightarrow \rho^+ \mu^- \mu^+$
- Mis-reconstructed:
 - $B^+ \rightarrow K^+ \mu^- \mu^+$

- Modelled using an exponential function
- Modelled using ARGUS functions

Modelled using a Crystal Ball function

IOP - APP, HEPP and NP Conference

Mis - reconstructed background

- $B^+ \rightarrow K^+ \mu^- \mu^+$ decay where the K is reconstructed as a π^+
- Used LHCb simulation data to plot: $\cos\theta_l$ in bins of $q^2 \longrightarrow$ Chebychev Polynomial

Fit

Mis - reconstructed background

- $B^+ \rightarrow K^+ \mu^- \mu^+$ decay where the K is reconstructed as a π^+
- Used LHCb simulation data to plot: $\cos\theta_l$ in bins of q^2 Chebychev Polynomial

 B_{mass}

Fit

Double Crystal Ball

Angular resolution and efficiency

- Angular resolution and efficiency are measured using LHCb simulation data
- Difference in $cos\theta_l$ between true and reconstructed events is small enough for the resolution to be neglected

Angular resolution and efficiency

- Angular resolution and efficiency are measured using LHCb simulation data
- Difference in $cos\theta_l$ between true and reconstructed events is small enough for the resolution to be neglected

 $1.1 < q^2 < 6.0 GeV/c^4$

Ω

-0 2

0.2

0.4

Angular Efficiency

Relative Efficiency

1.2

0.8

0.6

0.4

0.2

IOP - APP, HEPP and NP Conference

LHCb Simulation

Unofficial

0.6

0.8

 $\cos\theta_1$

1.2

0.8

0.6

0.4

Goal:

Reliably determine A_{FB} and F_{H}

- Toy experiment simulating
 - $B^+ \rightarrow \pi^+ \mu^- \mu^+$ decay signal
 - Angular efficiency
 - Background from mis-reconstructed $B^+ \to K^+ \mu^- \mu^+$ decay
- Set the initial values: $A_{\text{FB}} = 0.0, F_{\text{H}} = 0.1$
- 2D Profile of the Negative LogLikelihood function

Goal:

Reliably determine A_{FB} and F_{H}

- Toy experiment simulating
 - $B^+ \rightarrow \pi^+ \mu^- \mu^+$ decay signal
 - Angular efficiency
 - Background from mis-reconstructed $B^+ \rightarrow K^+ \mu^- \mu^+$ decay
- Set the initial values: $A_{\text{FB}} = 0.0, F_{\text{H}} = 0.1$
- 2D Profile of the Negative LogLikelihood function

Goal:

Reliably determine A_{FB} and F_{H}

- Toy experiment simulating
 - $B^+ \rightarrow \pi^+ \mu^- \mu^+$ decay signal
 - Angular efficiency
 - Background from mis-reconstructed $B^+ \to K^+ \mu^- \mu^+$ decay
- Set the initial values: $A_{\text{FB}} = 0.0, F_{\text{H}} = 0.1$
- 2D Profile of the Negative LogLikelihood function
- Minimise the $NLL(F_{H})$ for every A_{FB}

Goal:

Reliably determine A_{FB} and F_{H}

Control mode mass fits

• Well measured control modes:

 $B^+ \to J/\psi K^+$

 $B^+ \to J/\psi \pi^+$

 Mass fit to LHCb simulation data,

selecting control mode events, fitting with a Double Crystal Ball function

Next steps and Summary

- Conduct a 2D mass and angular fit on the control modes to validate the fit.
- Perform the angular analysis on the rare mode using the Feldman-Cousins method on data from Run I and Run II.

This method is preferred for better statistical properties.

- Excellent sensitivity to the SM in $B^+ \rightarrow \pi^+ \mu^- \mu^+$ decay.
- Aim to test the SM with $b \rightarrow dl^+l^-$ processes as has already been done with $b \rightarrow sl^+l^-$.

Backup slides

Control mode mass fits

- Well measured control modes are $B \rightarrow J/\psi K$ and $B \rightarrow J/\psi \pi$
- Performed a mass fit to LHCb simulation data, selecting $B \rightarrow J/\psi K$ events and fitting with a Double Crystal Ball function
 - Pass preselection cuts:
 - B_PT, hadron_PT, μ⁻_PT, μ⁺_PT > 300 GeV
 - hadron_isMuonLoose == 0
 - hadron_InAccMuon!=0
 - Pass trigger selection cut
 - Apply mva_mcweights from MVA conducted by the BF group
 - Apply PIDresampling cuts
 (Prof

(ProbNNpi_resampled<0.25 && ProbNNK_resampled>0.2)

- Apply BDT to >0.4 from BF analysis
- Simulation correction weights applied