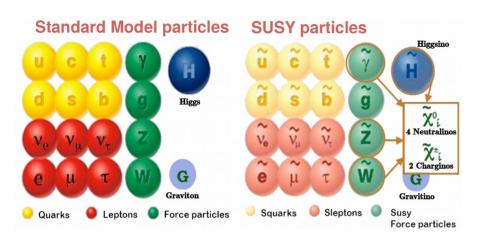
Search for Electroweak Production of Charginos and Neutralinos in Final States with 2 and 3 Leptons and E_T^{miss} with the ATLAS Experiment

IOP Institute of Physics:
Joint APP, HEPP and NP Conference

12th-15th April 2021

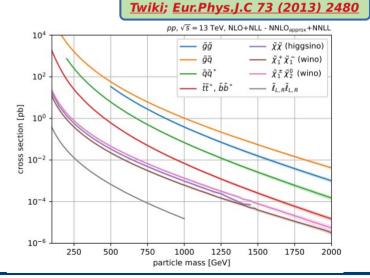
Marco Aparo (University of Sussex, UK), on behalf of the ATLAS Collaboration

Introduction


- ATLAS search for EWK direct production of Chargino and Neutralino
- Gauge- and Higgs-mediated decays into final states with missing transverse momentum and:
 - **→ Three leptons**
 - → Two leptons of the same charge

- Overview:
 - Physics scenario and motivation for these searches
 - Analyses strategies for each search
 - Results

Electroweak SUSY: the physics case

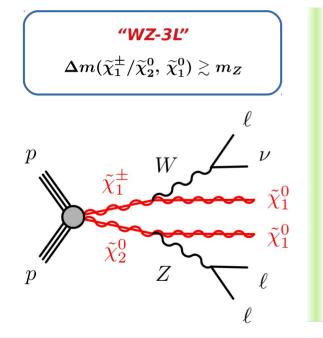


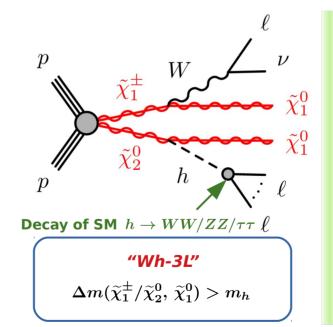
- Supersymmetry (SUSY) introduces a fermion-boson symmetry (Δs = ½) in the Standard Model (SM)
- In the **Minimal Supersymmetric SM (MSSM)**, the least number of new particles are predicted
- Charginos $\tilde{\chi}_i^{\pm}$ (i=1,2) and neutralinos $\tilde{\chi}_j^0$ (j=1,2,3,4) are linear combination of superpartners of gauge and Higgs bosons

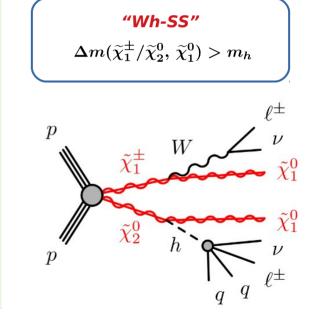
→ Produced at the LHC via their **electroweak** interaction

Given the existing constraints on squark and gluino masses

- → Electroweak chargino/neutralino production may become the dominant SUSY mechanism at the LHC
- $\widetilde{\chi}_1^{\pm}\widetilde{\chi}_2^0$ searches with boson-mediated decays to multileptonic final states
 - → key analyses to search for SUSY

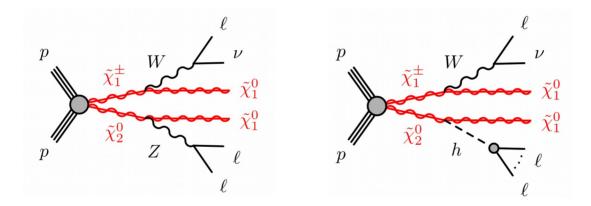

Targeted signal models




Simplified models assumptions:

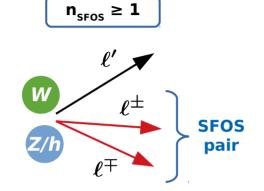
- EWK direct production of Chargino-Neutralino
- Wino-Bino scenario: $|M_1| < |M_2| \ll |\mu|$
- $\widetilde{\chi}_1^{\pm}/\widetilde{\chi}_2^0 \rightarrow$ Wino-like and mass-degenrate
- $\widetilde{\chi}_1^0 \rightarrow$ Bino-like and Lightest SUSY Particle (LSP)

- R-parity $(P_R = (-1)^{3(B-L)+2s})$ conservation:
 - $\rightarrow \widetilde{\chi}_1^0 = \mathsf{LSP} \rightarrow \mathsf{stable} \rightarrow \mathsf{Good} \, \mathbf{Dark} \, \mathbf{Matter} \, \mathbf{candidate!}$
- SM gauge- and SM Higgs-mediated decays (100% B.R.)



Three-lepton searches

New ATLAS analysis (<u>ATLAS-CONF-2020-015</u>), using full Run 2 (139 fb⁻¹) data from $\sqrt{s} = 13$ TeV pp collisions


Final state = three isolated leptons (e or μ) + E_T^{miss} + light (non b-tagged jets)

Analysis strategy: WZ-3L and Wh-3L

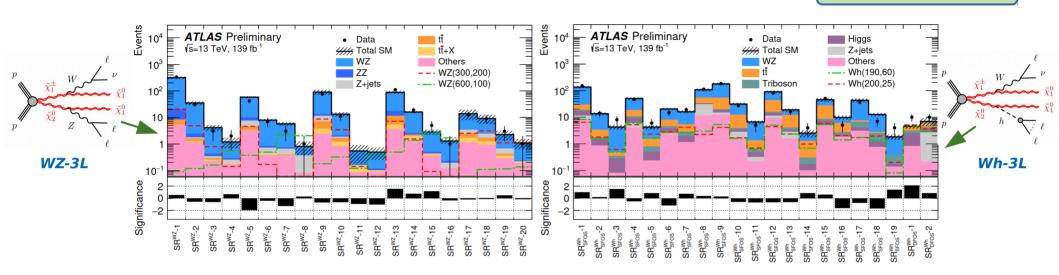
Event selection based on the presence of a Same-Flavour Opposite-Sign (SFOS) lepton pair + one extra lepton

- If $\left|m_{\ell\ell}^{
 m SFOS} m_Z
 ight| < 15\,{
 m GeV}$
 - → Target = WZ-3L
- Signal Regions (SRs) binned in $\,E_T^{miss}$, $\,m_T$:
 - Enhance sensitivity for different $\Delta m(\widetilde{\chi}_1^{\pm}/\widetilde{\chi}_2^0,\,\widetilde{\chi}_1^0)$ scenarios
 - Exploit topologies with jets from Initial State Radiation

- $n_{SFOS} = 0$ ℓ^{\pm} h ℓ^{\pm} DFOS pair
- Different-Flavour Opposite Sign (DFOS) lepton pair from SM Higgs decay
- Background suppression with requirements on:
 - Angular separation between leptons
 - Binning in jet multiplicity
- Irreducible backgrounds from: SM WZ (mainly in SFOS SRs) → MC normalised to data in a Control Region (CR);
 SM Higgs and Triboson processes (mainly in DFOS SRs)

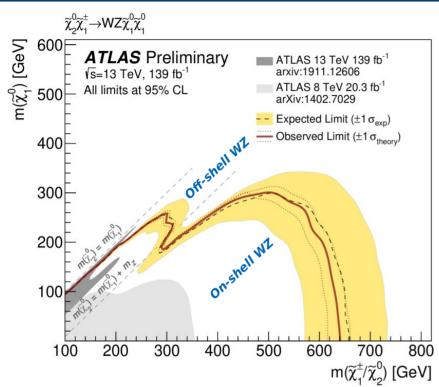
• If $\left|m_{\ell\ell}^{
m SFOS} - m_Z
ight| \geq 15\,{
m GeV}$

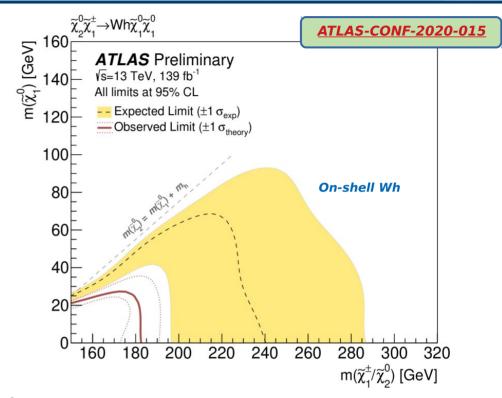
→ Target = Wh-3L


• Reducible backgrounds with "fake/non-prompt" leptons from SM Z+jets (estimated from data) and tt

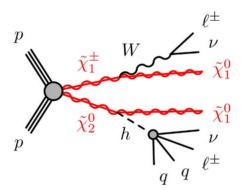
Results: WZ-3L and Wh-3L

ATLAS-CONF-2020-015




- Results from 3L search with full Run-2 data (139 fb⁻¹)
- Final background estimate from profile log-likelihood fit, simultaneous in all (orthogonal) CRs and SRs
- · No significant deviation from SM prediction observed

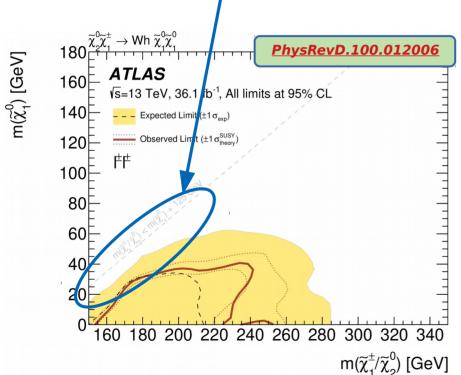
Model-dependent limits: WZ-3L and Wh-3L



- 95% Confidence Level upper-limits on $m(\widetilde{\chi}_1^{\pm}/\widetilde{\chi}_2^0)$ and $m(\widetilde{\chi}_1^0)$ using the CL_{S} prescription
 - For WZ-mediated models: $m(\widetilde{\chi}_1^{\pm}/\widetilde{\chi}_2^0)$ excluded up to 640 GeV for $m(\widetilde{\chi}_1^0)=0$, and up to 300 GeV for low $\Delta m(\widetilde{\chi}_1^{\pm}/\widetilde{\chi}_2^0,\,\widetilde{\chi}_1^0)=0$
 - For Wh-mediated model: $m(\widetilde{\chi}_1^\pm/\widetilde{\chi}_2^0)$ excluded up to 185 GeV for $m(\widetilde{\chi}_1^0)$ < 20 GeV

Two same-sign leptons search

Results available (<u>PhysRevD.100.012006</u>) with partial Run 2 (36.1 fb⁻¹) data from $\sqrt{s} = 13$ TeV pp collisions


 $Final state = two isolated same-sign (SS) leptons (e or <math>\mu$) + E_T^{miss} + light (non b-tagged jets)

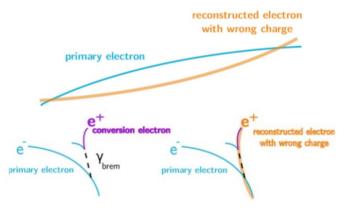
Analysis strategy: Wh-SS

- First round of analysis with partial Run-2 data (36.1 fb⁻¹) \rightarrow no excess observed with respect to SM prediction
- SRs re-optimisation with full Run-2 statistics, based on cut&count approach on relevant kinematic variables
 - <u>Aim</u>: improve sensitivity especially for low $\Delta m(\widetilde{\chi}_1^{\pm}/\widetilde{\chi}_2^0,\,\widetilde{\chi}_1^0)$

- $ullet E_T^{miss} \geq 50\,{
 m GeV} \quad o \quad {
 m from \ neutrinos \ and \ neutralinos}$
- b-tagged jets veto → suppression of top background
- Consider flavour channels: e[±]e[±], e[±]μ[±], μ[±]μ[±]
- Main discriminant against SM background is the "Stranverse mass":

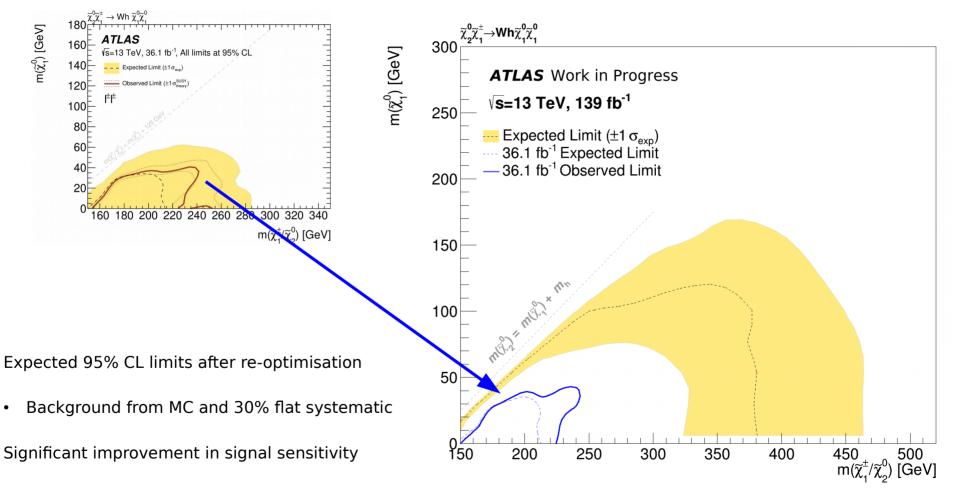
$$m_{T2} = \min_{q_{\mathrm{T}}} \left[\max \left(m_{\mathrm{T}}(\mathbf{p}_{\mathrm{T}}^{1}, \mathbf{q}_{\mathrm{T}}), m_{\mathrm{T}}(\mathbf{p}_{\mathrm{T}}^{2}, \mathbf{p}_{\mathrm{T}}^{\mathrm{miss}} - \mathbf{q}_{\mathrm{T}}) \right) \right]$$

- → Useful to target masses of pair-produced particles with invisibly decaying components
- Other variables include $\,m_T^{min}\,$ and the missing transverse energy significance
- SR binned in E_T^{miss} to target different $\Delta m(\widetilde{\chi}_1^{\pm}/\widetilde{\chi}_2^0,\,\widetilde{\chi}_1^0)$ scenarios


Backgrounds: Wh-SS

- <u>Irreducible backgrounds</u>: SM processes leading to prompt SS leptons
 - → Mainly from **di-boson** production such as **WZ** processes
 - → Other backgrounds include rarer **SM W**[±]**W**[±] processes

- Reducible (or detector) backgrounds:
 - Charge-flip → opposite-sign lepton events, such as from ttbar or Z+jets, being identified as same-sign due to the mis-reconstruction of the charge of one lepton (typically an electron)
 - Fake/Non-Prompt:
 - ightarrow Electrons and muons from semi-leptonic decay of heavy-flavour hadrons, mainly from $t\bar{t}$ or other SM top processes
 - \rightarrow Light-flavour jets being mis-identified as electrons, from W+jets or $t\bar{t}$ events
 - Electrons from ISR or FSR photon conversion



Expected sensitivity: Wh-SS

Conclusions

- ATLAS search for the production of chargino-neutralino decaying via WZ, and Wh into three light-flavour leptons and via Wh into two same-sign leptons
- Data compatible with SM prediction
- New results on the three-lepton search **significantly extend** known **constraints on charginos and neutralino masses** in the context of the respective simplified models
- · Results on the two same-sign leptons search currently available with partial Run-2 data
 - Ongoing search using full Run-2 data → significant improvement in signal sensitivity