Progress with Diamond-II storage ring lattice

Hossein Ghasem

[hossein.ghasem@diamond.ac.uk](mailto:Hossein.Ghasem@diamond.ac.uk)

Diamond Light Source IOP PAB Annual Conference 2021

Outline

- \Box Introduction to Diamond storage ring
- Motivation, wish-list and constraints for the new storage ring
- Paths to low emittance general introduction of the techniques being exploited
- Diamond-II storage ring lattice structure and main alternatives
	- O CDR (15-1-1)
	- o Lattice development after CDR
	- o Optimization strategy
	- o Baseline lattice 34-1-1 (Off axis injection)
	- o Lattice 34-2-2 (On axis injection)

\Box Overview of lattices

- o Parameters ID, IBS, 3HC
- o DA
- o Inj. Eff.
- o Lifetime.
- U Magnets
- **Timeline**
	- **Conclusion**

Diamond Light Source

- o Diamond is the UK's national **synchrotron radiation facility.**
- o Located at **Rutherford Appleton Laboratory**, **Oxfordshire**
- o Commissioning 2005 2006
- o Start of user operations Jan 2007
- o DDBA installed since Nov. 2016

Diamond-II upgrade

Motivation: Improve quality of photon beams delivered to users:

- o Increase spectral brightness and transverse coherence
- o Reduced source size, line-width
- o Optimise spectral range
- o Space for new beamlines

Starting wish-list

- o Low horizontal emittance
- o Increase in number of straight-sections for IDs
- o Maintain existing beamlines
- o Re-use existing hardware where possible (RF, IDs, injector, …)
- o Short pulse capabilities?

Constraints:

- o Must fit in the existing tunnel, Source-point changes kept to a minimum
- o Minimize technology risks
- o Minimize shutdown period

NOTE: Beam energy in Diamond-II storage ring will be to 3.5GeV

Paths to low emittance

A. increase number of dipoles (MBA)

$$
\epsilon_x \propto \frac{1}{N_d^3}
$$

- TME-like (Theoretical Minimum Emittance) cells provide lowest possible beam emittance by shaping dispersion and beta-functions to have a waist in the centre of the bending magnets.
- Starting from TME-like cells and increasing number of dipoles lead to substitutional reduction in beam emittance.

B. control Jx with trans. gradient dipoles

- Emittance lowered by increasing J_x
- Damping Partition Numbers:

 $\frac{I_5}{2}$ J_xI_2

 $J_x = 1 I_4$ $I₂$

• Emittance adjusted by introducing a vertically-focussing gradient in the dipoles

$$
I_4 = \oint \frac{\eta_x(s)}{\rho(s)} \left(\frac{1}{\rho^2(s)} + 2K(s) \right) ds
$$

Paths to low emittance

- C. use long. gradient dipoles
- Emittance lowered by minimising $I_{\rm g}$

$$
\epsilon_x = C_q \gamma^2 \frac{I_5}{J_x I_2}
$$

$$
I_5 = \oint \frac{\mathcal{H}(s)}{\rho^3(s)} ds
$$

$$
\mathcal{H}(s) = \gamma_x \eta_x^2 + 2\alpha_x \eta_x \eta_{x\prime} + \beta_x \eta_{x\prime}^2
$$

- Make the dipole field strongest where the dispersion is at a minimum
- Total bend angle is kept constant
- Can get below TME of uniform dipole
- Have the benefit of producing hard x-rays where B-field is large

D. employ reverse bending magnets

- Reverse bending magnets can be used as an additional handle to control the dispersion
- **Beta-functions largely unchanged**
- Located at large $\mathcal{H}(s)$, so also contribute to $\varepsilon_{\sf x}$. **Lead to very small or even negative momentum compaction factor**
- Impact on bunch-lengthening and instability thresholds to be determined

Diamond-II lattice structure

6 long straights, ~7.5 m long: IDs, injection elements 18 standard straights, ~5.2 m long: IDs

24 mid straights, ~2.9 m long: IDs, 3PW/dipole sources, RF, 3HC, diagnostics, stripline kickers

>35 % of the ring consists of insertion straights (quad to quad)

Diamond II CDR

ESRF-EBS Hybrid 7BC cell Double-Double Bend Achromat cell

Lattice structure is called as 'Modified-Hybrid 6-Bend Achromat'

- All Diamond-II storage ring options are based on the Modified-Hybrid 6 Bend Achromat structure.
- Version M-H6BA-15-1-1 of the lattice is the one presented in CDR.
- Each cell consists of:
	- ≥ 4 long. dipoles + 2 trans. gradient dipoles
	- ≥ 16 (17) quadrupoles
	- ≥ 12 sextupoles
	- ≥ 2 octupoles

Conceptual Design Report (May 2019): <https://www.diamond.ac.uk/Home/About/Vision/Diamond-II.html>

 30°

diamond

Diamond II lattice development after CDR

I. Addition of **reverse bend quadrupoles** to control dispersion found to be beneficial, either to:

- o increase dispersion at chromatic sextupoles (height of dispersion bump) which results to maximise momentum acceptance (lattice 34-1-1)-> (lifetime gain)
- o reduce dispersion in dipoles as well as MSS (emittance reduction)

- o improved variation w.r.t dispersion function
- o helps to lower the emittance
- o DL2 now different from DL1
- III. Tra. gradient added to two pieces of DL2 dipoles:
	- o Additional knobs to control phase advance for –I transformer and optics in midstraight

NLBD Optimization strategy

Nonlinear beam dynamic (NLBD) optimization is based on combination of:

o -I transformer: Phase advance between focussing chromatic sextupoles:

$$
\mu_x = \sim 3\pi
$$

$$
\mu_y = \sim \pi
$$

o Higher order achromat: Cell tunes chosen to cancel resonance driving terms over 8 cells:

> $μ_x = \gamma 2π*19/8$ $μ_y = \frac{1}{2π*7/8}$

Some detuning necessary:

ring tunes must avoid main resonances -I transformer drives 2nd order chromaticity (Δμ/2π ~ 0.025)

tolerance of $Δμ/2π ~ 0.01$ for cell tunes

Phase advance symmetrisation between sextupoles

Baseline lattice 34-1-1 _OFF axis INJ.

- \triangleright Increase margin of safety for off-axis injection
- \triangleright Improve the lifetime
- \triangleright Maintain brightness achieved during CDR

Baseline lattice 34-1-1 _OFF axis INJ.

- o DA: Physical stable area
- \circ Natural chromaticity has been corrected by the chromatic sextupoles to +2.3/+2.7.
- o Single particle tracking has been done for 2500 turns through the ring.

Lattice 34-2-2 _ ON axis INJ.

- \triangleright Keep the same physical structure as 34-1-1
- \triangleright Lower the equilibrium emittance (with IDs)
- \triangleright Set β -functions at IDs to increase brightness
- \triangleright Define machine optics that can be possible later upgrade path once storage ring commissioning is complete and injection performance limits are known.
- Constraints / challenges:
	- \triangleright Keep source points fixed; same circumference
	- \triangleright Anti-bends must be re-aligned to maintain the same bend angle following change in gradient
	- \triangleright Shorter lifetime / more frequent injections
	- \triangleright On-axis injection only (single bunch swap out)
	- \triangleright Increased sensitivity to ground motion / vibrations

Lattice 34-2-2 _ON axis INJ.

- \circ Natural chromaticity has been corrected by the chromatic sextupoles to +2.0/+2.3.
- o Single particle tracking has been done for 2500 turns through the ring.

Overview of lattices: parameters

*Assumes factor 3 bunch lengthening for all bunches

Overview of lattices: Inj. Eff.

- o Injection efficiency calculations carried out in ELEGANT over 2048 turns, with physical apertures
- o Injected bunch parameters taken from latest Booster-II parameters

o Transfer line optics re-optimised for each lattice and each injected beam offset

- o Clear improvement over 15-1-1 in terms of available dynamic aperture
- Less sensitive to individual seeds
- Lattice 34-2-2 would require on-axis swap-out injection

Overview of lattices: Lifetime

- o Lifetime is calculated in ELEGANT using calculated dynamic and momentum apertures
- o Uniform pressure distribution: 100 % CO, pressure = 1×10^{-9} mbar

Larger dynamic and momentum apertures for 34-1-1 lead to increased gas lifetime compared to 15-1-1

Magnets

Possible Timeline for Diamond-II

Conclusion

- o Unique: combines low emittance with high-capacity
- o Lattice design exploits many advanced techniques.
	- \triangleright MBA
	- \triangleright anti-bends
	- \triangleright longitudinal variable bends
	- \triangleright transverse gradient dipoles
- o Several lattice alternatives have been investigated and the propose lattice is 34-1-1.
	- \triangleright CDR 15-1-1
	- ≥ 34 -1-1 (Baseline solution Off axis injection)
	- 34-2-2 (High brightness lattice as possible later upgrade path -On axis injection)
- o Diamond-II is aiming for off axis injection.
- o High brightness mode is under consideration. This would require on axis injection scheme.
- o Engineering, vacuum and magnet design are in progress. No significant problems are foreseen.

Acknowledgments

Diamond-II Lattice Design Team:

R. Fielder, A. Jury, J. Kallestrup, I. Martin, T. Olsson, B. Singh, R. Walker,

Former Members:

A. Alekou, M. Apollonio, R. Bartolini, J. Bengtsson , T. Pulampong, F. B. Taheri

Thank you for your attention

Back up slides

Overview of lattices: DA

- o Initial characterisation of lattices uses reduced errors
- o Orbit, tunes and chromaticity correction only (no betabeat or coupling correction)
- o Physical apertures are included, with s-dependent ID gaps down to 4 mm taken into account
- o DA, injection efficiency and lifetime values validated using full errors in AT2 with Simulated Commissioning Toolbox.

Diamond-II RF system

Use **HOM-damped normal-conducting cavities (500 MHz):**

More robust and more easily repaired than superconducting cavities Releases current long RF straight for a new flagship beamline ID Broader frequency tuning range allows Diamond-I NC cavities to be used in Diamond-II Latest iteration of cavities used in BESSY, ALBA and ESRF (scaled for frequency) Smaller footprint than superconducting cavities in cryostats Effective HOM-damping has been demonstrated in Diamond-I

Eight RF cavities arranged in pairs in mid-section straights: Multiple low-voltage cavities gives lower wall losses Use of multiple cavities introduces redundancy of operation

Courtesy C. Christou

Diamond-II RF system

Amplifiers

Each cavity powered by single **solid state amplifier**

- 100 kW amplifier many 800 W power transistors
- Redundancy ensures continuity of operation
- Several commercial suppliers exist

Amplifier/cavity operation regulated by **digital LLRF**

- IQ or polar PI loops for cavity ampl./phase
- Based on the MicroTCA standard
- Digital (functionality can be added as required)
- Based on system developed at ALBA

Higher harmonic cavity

- Minimise storage ring heating
- Alleviate collective instabilities
- Maximise beam lifetime

Passive superconducting HHC

- Needs no new amplifier
- Operates across all beam currents
- Can fit in mid-section straight
- Available from industry (CEA design: SLS, Elettra)
- Can use the existing Diamond-I cryogenic plant

Courtesy C. Christou

Diamond-II Girders

Present solution:

- Magnets to be supported on single girder per half-cell (~8 m long)
- Manual adjustment system (screw-thread adjustment in each plane))
- Aim to achieve overall transmissibility of \sim 1 in 1-100 Hz band
- Electron beam is most sensitive to vertical girder motion
- Use viscoelastic tape in baseplates
	- stiff at high frequency to reduce transmissibility
	- Soft at low frequencies to allow expansion and contraction
- Choice of material from trial girders
	- steel fabrication (same as existing girders, good stiffness)
	- cast grey iron (better damping properties, easy to produce, costeffective)
	- carbon composite (lightweight, high natural frequency, expensive)

Test girders will inform final choice of material and support system (in progress).

Courtesy J. Dymoke Bradshaw

Diamond-II vacuum chamber

É

Diamond-II vacuum chamber

Four different girder types:

