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o Diamond is the UK’s national synchrotron radiation 
facility.

o Located at Rutherford Appleton Laboratory, 
Oxfordshire

o Commissioning 2005 - 2006
o Start of user operations Jan 2007
o DDBA installed since Nov. 2016

Lattice Combined DBA/DDBA

Structure 24 cells

Straights 18 × 5.3 m / 6 × 8.3 m / 1 x 3.4 m

Energy 3 GeV

Circumference 561.571 m

H/V Emittance 2.72 nm.rad / 8 pm.rad

Energy spread 0.096 %

Current 300 mA

Lifetime 10 h

Diamond Light Source

H. Ghasem, Diamond Status, IOP PABG 2021

35 Beamlines:
All straights now occupied
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Diamond-II upgrade

NOTE: Beam energy in 
Diamond-II storage ring will 
be to 3.5GeV

 Motivation: Improve quality of photon beams delivered to users:
o Increase spectral brightness and transverse coherence 
o Reduced source size, line-width 
o Optimise spectral range
o Space for new beamlines

 Starting wish-list
o Low horizontal emittance
o Increase in number of straight-sections for IDs
o Maintain existing beamlines
o Re-use existing hardware where possible (RF, IDs, injector, …)
o Short pulse capabilities?

 Constraints:
o Must fit in the existing tunnel, Source-point changes kept to a minimum 
o Minimize technology risks
o Minimize shutdown period



A. increase number of dipoles (MBA)

B. control Jx with trans. gradient dipoles

Paths to low emittance
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• Damping Partition Numbers:

• Emittance adjusted by introducing a vertically-focussing 
gradient in the dipoles
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• TME-like (Theoretical Minimum Emittance) cells provide 
lowest possible beam emittance by shaping dispersion 
and beta-functions to have a waist in the centre of the 
bending magnets.

• Starting from TME-like cells and increasing number of 
dipoles lead to substitutional reduction in beam 
emittance.



C. use long. gradient dipoles

D. employ reverse bending magnets

Paths to low emittance
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• Make the dipole field strongest where the dispersion is at a minimum
• Total bend angle is kept constant
• Can get below TME of uniform dipole
• Have the benefit of producing hard x-rays where B-field is large

• Emittance lowered by minimising 𝐼5
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• Reverse bending magnets can be used as an additional handle to control the 
dispersion 

• Beta-functions largely unchanged

• Located at large ℋ 𝑠 , so also contribute to εx.

• Lead to very small or even negative momentum compaction factor

• Impact on bunch-lengthening and instability thresholds to be determined



Diamond-II lattice structure
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~11.3m ~8.3m Diamond-I super-period

Magnets Standard StraightLong Straight Mid Straight

~2.9m~7.5m ~5.2m Diamond-II super-period

6 long straights, ~7.5 m long: IDs, injection elements
18 standard straights, ~5.2 m long: IDs
24 mid straights, ~2.9 m long: IDs, 3PW/dipole sources, RF, 3HC, diagnostics, stripline kickers 

>35 % of the ring consists of insertion straights (quad to quad)



Diamond II CDR
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Conceptual Design Report (May 2019):
https://www.diamond.ac.uk/Home/About/Vision/Diamond-II.html

• All Diamond-II storage ring options are based on the Modified-
Hybrid 6 Bend Achromat structure.

• Version M-H6BA-15-1-1 of the lattice is the one presented in 
CDR.

• Each cell consists of:

 4 long. dipoles + 2 trans. gradient dipoles

 16 (17) quadrupoles

 12 sextupoles

 2 octupoles

Parameter Values

Energy (GeV) 3.5

Betatron tunes [57.16, 20.25]

Natural emittance (pm.rad) 157

Emittance with IDs (pm.rad) 149

Natural chromaticity [-75.7, -89.7]

Momentum compaction factor 1.2×10-4

Energy Loss per turn (MeV) 0.67

Lattice structure is called as ‘Modified-Hybrid 6-Bend Achromat’

ESRF-EBS Hybrid 7BC cell
Double-Double Bend Achromat cell

https://www.diamond.ac.uk/Home/About/Vision/Diamond-II.html
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I. Addition of reverse bend quadrupoles to control dispersion found to be beneficial, either to:

o increase dispersion at chromatic sextupoles (height of dispersion bump) which results to maximise 
momentum acceptance (lattice 34-1-1)-> (lifetime gain)

o reduce dispersion in dipoles as well as MSS (emittance reduction)

Diamond II lattice development after CDR

II. B-field for the Long. Variable bend (DL) dipoles 
optimised:

o improved variation w.r.t dispersion 
function

o helps to lower the emittance

o DL2 now different from DL1

III. Tra. gradient added to two pieces of DL2 
dipoles:

o Additional knobs to control phase advance 
for –I transformer and optics in mid-
straight



H. Ghasem, Diamond Status, IOP PABG 2021

NLBD Optimization strategy

-I transformer

higher-order achromat

Nonlinear beam dynamic (NLBD) optimization is based on 
combination of:

o -I transformer: Phase advance between focussing 
chromatic sextupoles:

μx = ~3π
μy = ~π

o Higher order achromat: Cell tunes chosen to cancel 
resonance driving terms over 8 cells:

μx = ~2π*19/8
μy = ~2π*7/8

Some detuning necessary:
ring tunes must avoid main resonances
-I transformer drives 2nd order chromaticity 

(Δμ/2π ~ 0.025)
tolerance of Δμ/2π ~ 0.01 for cell tunes

o Phase advance symmetrisation between sextupoles
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Parameter Values

Energy (GeV) 3.5

Betatron tunes [54.15, 20.27]

Natural emittance (pm.rad) 161

Emittance with IDs (pm rad) 139

Natural chromaticity [-67.5, -88.6]

Momentum compaction factor 1.0×10-4

Energy Loss per turn (MeV) 0.72

Peak dispersion (mm) 80 mm

Baseline lattice 34-1-1 _OFF axis INJ.

~25% 

reduction

 Increase margin of safety for off-axis injection

 Improve the lifetime

 Maintain brightness achieved during CDR
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Baseline lattice 34-1-1 _OFF axis INJ.
o DA: Physical stable area
o Natural chromaticity has been corrected by the chromatic sextupoles to +2.3/+2.7.
o Single particle tracking has been done for 2500 turns through the ring.
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 Keep the same physical structure as 34-1-1

 Lower the equilibrium emittance (with IDs)

 Set 𝛽-functions at IDs to increase brightness

 Define machine optics that can be possible later 
upgrade path once storage ring commissioning is 
complete and injection performance limits are 
known. 

• Constraints / challenges:

 Keep source points fixed; same circumference

 Anti-bends must be re-aligned to maintain the 
same bend angle following change in gradient

 Shorter lifetime / more frequent injections

 On-axis injection only (single bunch swap out)

 Increased sensitivity to ground motion / 
vibrations

Parameter Values

Energy (GeV) 3.5

Betatron tunes [62.19, 20.30]

Natural emittance (pm.rad) 106

Emittance with IDs (pm.rad) 106

Natural chromaticity [-90.4, -111.7]

Momentum compaction factor 1.0×10-4

Energy Loss per turn (MeV) 0.72

Peak dispersion (mm) 65

Lattice 34-2-2 _ ON axis INJ.
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Lattice 34-2-2 _ON axis INJ.
o Natural chromaticity has been corrected by the chromatic sextupoles to +2.0/+2.3.
o Single particle tracking has been done for 2500 turns through the ring.
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Overview of lattices: parameters

Parameter Units 15-1-1 (CDR) 34-1-1 34-2-2

Circumference m 560.573856 560.560644 560.560644

Betatron tunes [57.16, 20.25] [54.15, 20.27] [62.19, 20.30]

Natural chromaticity [-75.7, -89.7] [-67.5, -88.6] [-90.4, -111.7]

Momentum compaction factor 1.2×10-4 1.0×10-4 1.0×10-4

Energy Loss per turn (without/with IDs) MeV 0.67 / 1.71 0.72 / 1.76 0.72 / 1.76

Total absolute bend angle degrees 360 388.8 388.8

Number of anti-bend dipoles - 0 96 96

Emittance (bare lattice) pm.rad 157 161 106

Energy spread (bare lattice) % 0.078 0.094 0.091

Bunch length (bare lattice) mm 3.5 3.8 3.8

Emittance (with IDs, IBS, 3HC*) pm.rad 147.5 138.7 106

Energy spread (with IDs, IBS, 3HC*) % 0.10 0.11 0.11

Bunch length (with IDs, IBS, 3HC*) mm 10.9 10.3 10.6

Anti-bend gradient / 
offset / angle

QF4 Tm-1 / mm / deg - 56.4 / 3.61 / 0.150 53.1 / 3.84 / 0.150

QF4L Tm-1 / mm / deg - 73.3 / 3.24 / 0.175 58.7 / 4.05 / 0.175

QF4_C1 Tm-1 / mm / deg - 33.5 / 5.06 / 0.125 48.3 / 3.52 / 0.125

*Assumes factor 3 bunch lengthening for all bunches
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o Injection efficiency calculations carried out in ELEGANT over 2048 turns, with physical apertures

o Injected bunch parameters taken from latest Booster-II parameters

Inj. Bunch Parameter Unit Value

Horizontal emittance nm.rad 17.7

Vertical emittance nm.rad 1.8

Energy spread % 0.086

Bunch length mm 11.6

Overview of lattices: Inj. Eff.

o Transfer line optics re-optimised for each lattice 
and each injected beam offset

o Lattice 34-1-1:

o Clear improvement over 15-1-1 in terms of 
available dynamic aperture

o Less sensitive to individual seeds

o Lattice 34-2-2 would require on-axis swap-out 
injection
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Parameter Units 15-1-1 34-1-1 34-2-2

RF voltage MV 1.27 1.42 1.25

Bunch length mm 3.51 3.75 3.83

Bunch current mA 0.33 0.33 0.33

Average Touschek lifetime h 1.16 1.80 0.65

Coulomb lifetime h 33.01 48.99 9.17

Bremsstrahlung lifetime h 72.64 73.56 68.45

Total gas h 22.70 29.41 8.09

Averafe Touschek lifetime (with IDs, IBS, 3HC) h 4.07 5.04 2.14

Overall lifetime h 3.45 4.30 1.70

15-1-1 34-1-1 34-2-2

Overview of lattices: Lifetime

o Lifetime is calculated in ELEGANT 
using calculated dynamic and 
momentum apertures

o Uniform pressure distribution: 100 % 
CO, pressure = 1×10-9 mbar

Larger dynamic and momentum 
apertures for 34-1-1 lead to 
increased gas lifetime compared to 
15-1-1
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Magnet Type Description Max Strength Type

CFDL
Combined function longi. 
gradient dipole

0.33 to 0.83 T
-0.5 to 2 T/m

Permanent

DQ
0.6951 T
-32.397 T/m

Electromagnet

Quadrupole 85.2 T/m Electromagnet

Antibend Quads Offset quadrupole, 3.2<dx<5.1
73 T/m
3.24 mm 

Electromagnet

Sextupole Sextupoles with correctors 4186.29 T/m^2 Electromagnet

Octupole Simple octupoles 45401.77 T/m^3 Electromagnet

Magnets
courtesy A. Shahveh
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Possible Timeline for Diamond-II
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o Unique: combines low emittance with high-capacity

o Lattice design exploits many advanced techniques. 

 MBA 

 anti-bends

 longitudinal variable bends

 transverse gradient dipoles

o Several lattice alternatives have been investigated and the propose lattice is 34-1-1.

 CDR 15-1-1

 34-1-1 (Baseline solution - Off axis injection)

 34-2-2 (High brightness lattice as possible later upgrade path -On axis injection)

o Diamond-II is aiming for off axis injection.

o High brightness mode is under consideration. This would require on axis injection scheme.

o Engineering, vacuum and magnet design are in progress. No significant problems are 
foreseen.

Conclusion
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Back up slides
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o Initial characterisation of lattices uses reduced errors

o Orbit, tunes and chromaticity correction only (no beta-
beat or coupling correction)

o Physical apertures are included, with s-dependent ID 
gaps down to 4 mm taken into account

o DA, injection efficiency and lifetime values validated 
using full errors in AT2 with Simulated Commissioning 
Toolbox.

Δx, Δy (μm) Roll (μrad) Strength error

Dipole 15 100 1×10-4

Quadrupole 15 100 1×10-3

Sextupole 15 100 1×10-3

Octupole 15 100 1×10-3

BPM 20 10 -

15-1-1

Overview of lattices: DA

34-1-1 34-2-2
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Diamond-II RF system 
Use HOM-damped normal-conducting cavities (500 MHz):

More robust and more easily repaired than superconducting cavities
Releases current long RF straight for a new flagship beamline ID
Broader frequency tuning range allows Diamond-I NC cavities to be used in Diamond-II
Latest iteration of cavities used in BESSY, ALBA and ESRF (scaled for frequency)
Smaller footprint than superconducting cavities in cryostats
Effective HOM-damping has been demonstrated in Diamond-I

Eight RF cavities arranged in pairs in mid-section straights:
Multiple low-voltage cavities gives lower wall losses
Use of multiple cavities introduces redundancy of operation

Courtesy C. Christou
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Diamond-II RF system 
Amplifiers

Each cavity powered by single solid state amplifier
• 100 kW amplifier many 800 W power transistors
• Redundancy ensures continuity of operation
• Several commercial suppliers exist

Amplifier/cavity operation regulated by digital LLRF
• IQ or polar PI loops for cavity ampl./phase
• Based on the MicroTCA standard
• Digital (functionality can be added as required)
• Based on system developed at ALBA

Higher harmonic cavity 

• Minimise storage ring heating
• Alleviate collective instabilities
• Maximise beam lifetime

Passive superconducting HHC
• Needs no new amplifier
• Operates across all beam currents
• Can fit in mid-section straight
• Available from industry (CEA design: SLS, Elettra)
• Can use the existing Diamond-I cryogenic plant

Courtesy C. Christou
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Diamond-II Girders
Present solution:

• Magnets to be supported on single girder per half-cell (~8 m long)

• Manual adjustment system (screw-thread adjustment in each plane)) 

• Aim to achieve overall transmissibility of ~1 in 1-100 Hz band

• Electron beam is most sensitive to vertical girder motion

• Use viscoelastic tape in baseplates

• stiff at high frequency to reduce transmissibility

• Soft at low frequencies to allow expansion and contraction

• Choice of material from trial girders

• steel fabrication (same as existing girders, good stiffness)

• cast grey iron (better damping properties, easy to produce, cost-
effective)

• carbon composite (lightweight, high natural frequency, expensive)

Test girders will inform final choice of material and support system (in 
progress).

Courtesy J. Dymoke Bradshaw
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Diamond-II vacuum chamber 

Requirement: Target average pressure ≤ 10-9 mbar at 300 mA after 100 A.h beam conditioning

Current solution (WIP)

Vessel cross-section: Mainly circular (20 mm inner diameter)

Antechamber in those dipole vessels with photon beam extraction

Pumping: Non-evaporable getter (NEG) coated apart from antechamber vessels

Plus discrete ion pumps and NEG cartridge pumps

3D vacuum sims to confirm vacuum (Synrad+, Molflow+, Comsol Multiphysics®)

Heat load management: Mix of discrete and distributed absorbers

Materials/manufacturing: Most vessels copper; antechamber vessels aluminium

CuCrZr discrete absorbers possibly with some additive manufacturing

Fully RF-shielded gate valves, flanges and bellows

NEG coating by industry

Assembly process: Ex-situ bakeout only

Vacuum strings (~7m) built up, baked out and NEG activated on assembly 
trolleys

Remain under vacuum during installation Courtesy M. Cox
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Residual gas 

analyser (RGA) 

ports

Four different girder types:

Long to Mid (LM) 
Mid to Standard (MS) 
Standard to Mid (SM) 
Mid to Long (ML)

plus some special variants for particular beamlines

Ion/NEG 

pumps (not 

all labelled 

in this 

diagram)
Courtesy M. Cox

Diamond-II vacuum chamber 


