Progress with Diamond-II storage ring lattice

Hossein Ghasem

hossein.ghasem@diamond.ac.uk

Diamond Light Source IOP PAB Annual Conference 2021

Outline

- Introduction to Diamond storage ring
- Motivation, wish-list and constraints for the new storage ring
- Paths to low emittance general introduction of the techniques being exploited
- Diamond-II storage ring lattice structure and main alternatives
 - CDR (15-1-1)
 - Lattice development after CDR
 - Optimization strategy
 - Baseline lattice 34-1-1 (Off axis injection)
 - Lattice 34-2-2 (On axis injection)

Overview of lattices

- Parameters ID, IBS, 3HC
- o DA
- Inj. Eff.
- o Lifetime.
- Magnets
- Timeline
- Conclusion

Diamond Light Source

- Diamond is the UK's national synchrotron radiation facility.
- Located at Rutherford Appleton Laboratory, Oxfordshire
- o Commissioning 2005 2006
- Start of user operations Jan 2007
- DDBA installed since Nov. 2016

Beamline	2002	2003 2004 2005 2006 2007 2008 2	2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022
Phase 1		·	
II2 Macromolecular Crystallography	1		
113 Macromolecular Crystallography	1		35 Beamlines:
184 Macromolecular Crystallography	1		55 Dearmines.
NG Nanoscience	1		All straights now occupied
115 Extreme Conditions	1		All straights now occupied
116 Materials and Magnetism	1		
tia Microfocus Spectroscopy			
Phase II		-	
122 Non-Crystalline Diffraction		l.	
B16 Test Beamline			
11 High Resolution Power Diffraction			
124 Microfocus MX			
119 Small Molecule Diffraction			
623 Circular Dichroism			
112 JEEP (Engineering, Environment & Processing)			
194-1 Monochromatic MX			
128 - EDE Branchline			
128 - XAS Branchline			
117 Surface and Interface Diffraction (XENA)			
B22 Infrarel Microscopy			
till BLADE: X-ray Dichroism & Scattering			
B18 Core EXAFS			
tia X-ray - Coherence Branchline			
tia X-ray - Imaging Branchline			
IIII SISA: Surface and Interfaces			
Phase			•
B21 High Throughput SAIS			
123 Long wavelength Mix			
ID ARPES			
H24 - Cryo I ransmission Militoscope			
na sort k-ray meroscope (si km)	ļ		
Life manu X-ray Manuscale Proce for Complex Systems (MXMP 171 Juniority X and Sectionics (NYC)			
DET MERICE AHAY SCHENNIG (145)			
HE-1 K one Data Contrains Netriliantian Constian			
use a sensy can avalue ing usahikitiki filihitiki Vidi Yi Verentia MY in citu	11		
Vielan Versetile MY internetices			
NAD Dual imaging and Diffraction			

Lattice	Combined DBA/DDBA
Structure	24 cells
Straights	18 × 5.3 m / 6 × 8.3 m / 1 x 3.4 m
Energy	3 GeV
Circumference	561.571 m
H/V Emittance	2.72 nm.rad / 8 pm.rad
Energy spread	0.096 %
Current	300 mA
Lifetime	10 h

Diamond-II upgrade

- ☐ Motivation: Improve quality of photon beams delivered to users:
 - Increase spectral brightness and transverse coherence
 - Reduced source size, line-width
 - o Optimise spectral range
 - Space for new beamlines

Starting wish-list

- Low horizontal emittance
- o Increase in number of straight-sections for IDs
- Maintain existing beamlines
- Re-use existing hardware where possible (RF, IDs, injector, ...)
- Short pulse capabilities?

Constraints:

- Must fit in the existing tunnel, Source-point changes kept to a minimum
- Minimize technology risks
- o Minimize shutdown period

NOTE: Beam energy in Diamond-II storage ring will be to 3.5GeV

Paths to low emittance

A. increase number of dipoles (MBA)

$$\epsilon_x \propto \frac{1}{N_d^3}$$

- TME-like (Theoretical Minimum Emittance) cells provide lowest possible beam emittance by shaping dispersion and beta-functions to have a waist in the centre of the bending magnets.
- Starting from TME-like cells and increasing number of dipoles lead to substitutional reduction in beam emittance.

B. control Jx with trans. gradient dipoles

- Emittance lowered by increasing J_x
- Damping Partition Numbers:

 $\epsilon_x = C_q \gamma^2 \frac{I_5}{J_x I_2}$

 $J_x = 1 - \frac{I_4}{I_2}$

Emittance adjusted by introducing a vertically-focussing gradient in the dipoles

$$I_4 = \oint \frac{\eta_x(s)}{\rho(s)} \left(\frac{1}{\rho^2(s)} + 2K(s) \right) ds$$

Paths to low emittance

- C. use long. gradient dipoles
- Emittance lowered by minimising I₅

$$\epsilon_{\chi} = C_q \gamma^2 \frac{I_5}{J_{\chi} I_2}$$
$$I_5 = \oint \frac{\mathcal{H}(s)}{\rho^3(s)} ds$$

$$\mathcal{H}(s)=\gamma_x\eta_x^2+2\alpha_x\eta_x\eta_{x\prime}+\beta_x\eta_{x\prime}^2,$$

- Make the dipole field strongest where the dispersion is at a minimum
- Total bend angle is kept constant
- Can get below TME of uniform dipole
- Have the benefit of producing hard x-rays where B-field is large

D. employ reverse bending magnets

- Reverse bending magnets can be used as an additional handle to control the dispersion
- Beta-functions largely unchanged
- Located at large H(s), so also contribute to ε_x.
 Lead to very small or even negative momentum compaction factor
- Impact on bunch-lengthening and instability thresholds to be determined

Diamond-II lattice structure

6 long straights, ~7.5 m long:
18 standard straights, ~5.2 m long:
24 mid straights, ~2.9 m long:

IDs, injection elements IDs IDs, 3PW/dipole sources, RF, 3HC, diagnostics, stripline kickers

>35 % of the ring consists of insertion straights (quad to quad)

Diamond II CDR

ESRF-EBS Hybrid 7BC cell Double-Double Bend Achromat cell

Lattice structure is called as 'Modified-Hybrid 6-Bend Achromat'

- All Diamond-II storage ring options are based on the Modified-Hybrid 6 Bend Achromat structure.
- Version M-H6BA-15-1-1 of the lattice is the one presented in CDR.
- Each cell consists of:
 - 4 long. dipoles + 2 trans. gradient dipoles
 - ➢ 16 (17) quadrupoles
 - > 12 sextupoles
 - ➤ 2 octupoles

Conceptual Design Report (May 2019): https://www.diamond.ac.uk/Home/About/Vision/Diamond-II.html

diamono

Diamond II lattice development after CDR

I. Addition of <u>reverse bend quadrupoles</u> to control dispersion found to be beneficial, either to:

- increase dispersion at chromatic sextupoles (height of dispersion bump) which results to maximise momentum acceptance (lattice 34-1-1)-> (lifetime gain)
- o reduce dispersion in dipoles as well as MSS (emittance reduction)

- improved variation w.r.t dispersion function
- o helps to lower the emittance
- DL2 now different from DL1
- III. Tra. gradient added to two pieces of DL2 dipoles:
 - Additional knobs to control phase advance for –I transformer and optics in midstraight

NLBD Optimization strategy

Nonlinear beam dynamic (NLBD) optimization is based on combination of:

• -I transformer: Phase advance between focussing chromatic sextupoles:

• Higher order achromat: Cell tunes chosen to cancel resonance driving terms over 8 cells:

 $\mu_x = 2\pi * 19/8$ $\mu_y = 2\pi * 7/8$

Some detuning necessary:

ring tunes must avoid main resonances -I transformer drives 2^{nd} order chromaticity ($\Delta\mu/2\pi \sim 0.025$)

tolerance of $\Delta \mu / 2\pi \approx 0.01$ for cell tunes

Phase advance symmetrisation between sextupoles

Baseline lattice 34-1-1 _OFF axis INJ.

- Increase margin of safety for off-axis injection
- Improve the lifetime
- Maintain brightness achieved during CDR

Parameter	Values
Energy (GeV)	3.5
Betatron tunes	[54.15, 20.27]
Natural emittance (pm.rad)	161
Emittance with IDs (pm rad)	139
Natural chromaticity	[-67.5, -88.6]
Momentum compaction factor	1.0×10 ⁻⁴
Energy Loss per turn (MeV)	0.72
Peak dispersion (mm)	80 mm

Baseline lattice 34-1-1 _OFF axis INJ.

- o DA: Physical stable area
- \circ Natural chromaticity has been corrected by the chromatic sextupoles to +2.3/+2.7.
- Single particle tracking has been done for 2500 turns through the ring.

Lattice 34-2-2 ON axis INJ.

- Keep the same physical structure as 34-1-1
- Lower the equilibrium emittance (with IDs)
- > Set β -functions at IDs to increase brightness
- Define machine optics that can be possible later upgrade path once storage ring commissioning is complete and injection performance limits are known.
- Constraints / challenges:
 - Keep source points fixed; same circumference
 - Anti-bends must be re-aligned to maintain the same bend angle following change in gradient
 - Shorter lifetime / more frequent injections
 - On-axis injection only (single bunch swap out)
 - Increased sensitivity to ground motion / vibrations

Parameter	Values
Energy (GeV)	3.5
Betatron tunes	[62.19, 20.30]
Natural emittance (pm.rad)	106
Emittance with IDs (pm.rad)	106
Natural chromaticity	[-90.4, -111.7]
Momentum compaction factor	1.0×10 ⁻⁴
Energy Loss per turn (MeV)	0.72
Peak dispersion (mm)	65

Lattice 34-2-2 ON axis INJ.

- \circ Natural chromaticity has been corrected by the chromatic sextupoles to +2.0/+2.3.
- Single particle tracking has been done for 2500 turns through the ring.

Overview of lattices: parameters

Parameter		Units	15-1-1 (CDR)	34-1-1	34-2-2
Circumference		m	560.573856	560.560644	560.560644
Betatron tunes			[57.16, 20.25]	[54.15, 20.27]	[62.19, 20.30]
Natural chromaticity			[-75.7, -89.7]	[-67.5, -88.6]	[-90.4, -111.7]
Momentum compactio	n factor		1.2×10 ⁻⁴	1.0×10 ⁻⁴	1.0×10 ⁻⁴
Energy Loss per turn (w	vithout/with IDs)	MeV	0.67 / 1.71	0.72 / 1.76	0.72 / 1.76
Total absolute bend an	gle	degrees	360	388.8	388.8
Number of anti-bend d	ipoles	-	0	96	96
Emittance (bare lattice)	pm.rad	157	161	106
Energy spread (bare lat	tice)	%	0.078	0.094	0.091
Bunch length (bare latt	ice)	mm	3.5	3.8	3.8
Emittance (with IDs, IB	S, 3HC*)	pm.rad	147.5	138.7	106
Energy spread (with ID	s, IBS, 3HC*)	%	0.10	0.11	0.11
Bunch length (with IDs	s, IBS, 3HC*)	mm	10.9	10.3	10.6
	QF4	Tm ⁻¹ / mm / deg	-	56.4/3.61/0.150	53.1/3.84/0.150
Anti-bend gradient /	QF4L	Tm ⁻¹ / mm / deg	-	73.3 / 3.24 / 0.175	58.7 / 4.05 / 0.175
offset / angle	QF4_C1	Tm ⁻¹ / mm / deg	-	33.5 / 5.06 / 0.125	48.3 / 3.52 / 0.125

*Assumes factor 3 bunch lengthening for all bunches

Overview of lattices: Inj. Eff.

- Injection efficiency calculations carried out in ELEGANT over 2048 turns, with physical apertures
- o Injected bunch parameters taken from latest Booster-II parameters

 Transfer line optics re-optimised for each lattice and each injected beam offset

Inj. Bunch Parameter	Unit	Value
Horizontal emittance	nm.rad	17.7
Vertical emittance	nm.rad	1.8
Energy spread	%	0.086
Bunch length	mm	11.6

- Lattice 34-1-1:
 - Clear improvement over 15-1-1 in terms of available dynamic aperture
 - Less sensitive to individual seeds
- Lattice 34-2-2 would require on-axis swap-out injection

Overview of lattices: Lifetime

- Lifetime is calculated in ELEGANT using calculated dynamic and momentum apertures
- Uniform pressure distribution: 100 %
 CO, pressure = 1×10⁻⁹ mbar

Larger dynamic and momentum apertures for 34-1-1 lead to increased gas lifetime compared to 15-1-1

Parameter	Units	15-1-1	34-1-1	34-2-2
RF voltage	MV	1.27	1.42	1.25
Bunch length	mm	3.51	3.75	3.83
Bunch current	mA	0.33	0.33	0.33
Average Touschek lifetime	h	1.16	1.80	0.65
Coulomb lifetime	h	33.01	48.99	9.17
Bremsstrahlung lifetime	h	72.64	73.56	68.45
Total gas	h	22.70	29.41	8.09
Averafe Touschek lifetime (with IDs, IBS, 3HC)	h	4.07	5.04	2.14
Overall lifetime	h	3.45	4.30	1.70

Magnets

Magnet Type	Description	Max Strength	Туре
CFDL	Combined function longi. gradient dipole	0.33 to 0.83 T -0.5 to 2 T/m	Permanent
DQ		0.6951 T -32.397 T/m	Electromagnet
Quadrupole		85.2 T/m	Electromagnet
Antibend Quads	Offset quadrupole, 3.2 <dx<5.1< td=""><td>73 T/m 3.24 mm</td><td>Electromagnet</td></dx<5.1<>	73 T/m 3.24 mm	Electromagnet
Sextupole	Sextupoles with correctors	4186.29 T/m^2	Electromagnet
Octupole	Simple octupoles	45401.77 T/m^3	Electromagnet

Possible Timeline for Diamond-II

Event	Date
CDR Published	May 2019
Draft TDR	Dec. 2021
Start of funding and procurement	Apr. 2022
Start of shutdown	Dec. 2025
Resume full User Mode	Jun. 2027

Conclusion

- Unique: combines low emittance with high-capacity
- Lattice design exploits many advanced techniques.
 - ➤ MBA
 - anti-bends
 - Iongitudinal variable bends
 - transverse gradient dipoles
- \circ Several lattice alternatives have been investigated and the propose lattice is 34-1-1.
 - ➤ CDR 15-1-1
 - ➢ 34-1-1 (Baseline solution Off axis injection)
 - 34-2-2 (High brightness lattice as possible later upgrade path -On axis injection)
- $\circ~$ Diamond-II is aiming for off axis injection.
- High brightness mode is under consideration. This would require on axis injection scheme.
- Engineering, vacuum and magnet design are in progress. No significant problems are foreseen.

Acknowledgments

Diamond-II Lattice Design Team:

R. Fielder, A. Jury, J. Kallestrup, I. Martin, T. Olsson, B. Singh, R. Walker,

Former Members:

A. Alekou, M. Apollonio, R. Bartolini, J. Bengtsson, T. Pulampong, F. B. Taheri

Thank you for your attention

Back up slides

Overview of lattices: DA

- Initial characterisation of lattices uses reduced errors
- Orbit, tunes and chromaticity correction only (no betabeat or coupling correction)
- Physical apertures are included, with s-dependent ID gaps down to 4 mm taken into account
- DA, injection efficiency and lifetime values validated using full errors in AT2 with Simulated Commissioning Toolbox.

	Δx, Δy (μm)	Roll (µrad)	Strength error
Dipole	15	100	1×10 ⁻⁴
Quadrupole	15	100	1×10 ⁻³
Sextupole	15	100	1×10 ⁻³
Octupole	15	100	1×10 ⁻³
BPM	20	10	-

Diamond-II RF system

Use HOM-damped normal-conducting cavities (500 MHz):

More robust and more easily repaired than superconducting cavities Releases current long RF straight for a new flagship beamline ID Broader frequency tuning range allows Diamond-I NC cavities to be used in Diamond-II Latest iteration of cavities used in BESSY, ALBA and ESRF (scaled for frequency) Smaller footprint than superconducting cavities in cryostats Effective HOM-damping has been demonstrated in Diamond-I

Eight RF cavities arranged in pairs in mid-section straights: Multiple low-voltage cavities gives lower wall losses Use of multiple cavities introduces redundancy of operation

Courtesy C. Christou

Diamond-II RF system

Amplifiers

Each cavity powered by single solid state amplifier

- 100 kW amplifier many 800 W power transistors
- Redundancy ensures continuity of operation
- Several commercial suppliers exist

Amplifier/cavity operation regulated by digital LLRF

- IQ or polar PI loops for cavity ampl./phase
- Based on the MicroTCA standard
- Digital (functionality can be added as required)
- Based on system developed at ALBA

Higher harmonic cavity

- Minimise storage ring heating
- Alleviate collective instabilities
- Maximise beam lifetime

Passive superconducting HHC

- Needs no new amplifier
- Operates across all beam currents
- Can fit in mid-section straight
- Available from industry (CEA design: SLS, Elettra)
- Can use the existing Diamond-I cryogenic plant

Courtesy C. Christou

Diamond-II Girders

Present solution:

- Magnets to be supported on single girder per half-cell (~8 m long)
- Manual adjustment system (screw-thread adjustment in each plane))
- Aim to achieve overall transmissibility of ~1 in 1-100 Hz band
- Electron beam is most sensitive to vertical girder motion
- Use viscoelastic tape in baseplates
 - stiff at high frequency to reduce transmissibility
 - Soft at low frequencies to allow expansion and contraction
- Choice of material from trial girders
 - steel fabrication (same as existing girders, good stiffness)
 - cast grey iron (better damping properties, easy to produce, costeffective)
 - carbon composite (lightweight, high natural frequency, expensive)

Test girders will inform final choice of material and support system (in progress).

Courtesy

Courtesy J. Dymoke Bradshaw

Diamond-II vacuum chamber

Requirement:	Target average pressure $\leq 10^{-9}$ mbar at 300 mA after 10	00 A.h beam conditioning
Current solution (WIP)		
Vessel cross-section:	Mainly circular (20 mm inner diameter)	
	Antechamber in those dipole vessels with photon bear	m extraction
Pumping:	Non-evaporable getter (NEG) coated apart from antec	hamber vessels
	Plus discrete ion pumps and NEG cartridge pumps	
	3D vacuum sims to confirm vacuum (Synrad+, Molflow	v+, Comsol Multiphysics [®])
Heat load management	: Mix of discrete and distributed absorbers	
Materials/manufacturir	ng: Most vessels copper; antechamber vessels alur	ninium
	CuCrZr discrete absorbers possibly with some additive	manufacturing
	Fully RF-shielded gate valves, flanges and bellows	
	NEG coating by industry	
Assembly process:	Ex-situ bakeout only	
	Vacuum strings (~7m) built up, baked out and NEG act	ivated on assembly
	trolleys	
	Remain under vacuum during installation	Courtesy M. Cox
	H. Ghasem, Diamond Status, IOP PABG 2021	

Diamond-II vacuum chamber

Four different girder types:

