6" GEANT4

A SIMULATION TOOLKIT

User Actions
aka ‘Extracting Useful Information’

Mihaly Novak (CERN)
Geant4 Beginners Course
25-31 May 2021 CERN

Some of this material was prepared by Makoto Asai (SLAC).

CE/RW ol AR
) Dhml AN

User Actions - Overview

« mandatory Users actions classes
— G4VUserActionlnitialization
— G4VUserPrimaryGeneratorAction
« optional Geant4 User Action classes
— G4UserRunAction
— G4UserEventAction
— G4UserStackingAction (not included today)
— G4UserTrackingAction
— GA4UserSteppingAction
« fully customizable (empty by default)

« user action classes are used to setup and/or modify
the simulation or collect information about the run

— allow to take actions specific for the given
simulation

» simulate only relevant particles
« save specific information, fill histograms
« speed-up simulation by applying different
limits
G4Run also plays an important role

SIMULATION TOOLKIT

G4VUserActionlnitialization

G4VUserActionlnitialization (1/2)

 virtual void G4VUserActioninitialization::Build() const = 0;

— Pure virtual method(mandatory) to be implemented by the user
to instantiate all (mandatory and optional) user action objects

— At least, the mandatory UserPrimaryGeneratorAction needs to be
instantiated here

— This method is invoked by each worker
 virtual void G4VUserActionlnitialization::BuildForMaster()
— This method is invoked only by the master
— Note, that it’s not pure virtual (invoked only in MT)
— For instantiating only UserRunAction

— This will be the master’s UserRunAction

— This UserRunAction might or might not be the same as for workers
(its IsMaster() method will return true)

6 GeanT4

G4VUserActionlnitialization (2/2)

6 GEANT4

« G4VUserActionlnitialization base class provides the following methods
to set user actions, that should be used inside the Build() interface
method to set the user actions after their construction:

void SetUserAction(G4VUserPrimaryGeneratorAction*) const;
void SetUserAction(G4UserRunAction*) const;

void SetUserAction(G4UserEventAction*) const;

void SetUserAction(G4UserStackingAction*) const;

void SetUserAction(G4UserTrackingAction*) const;

void SetUserAction(G4UserSteppingAction*) const;

void YourActionInitialization::Build() const

{

YourPrimaryGeneratorActionx primaryAction = new YourPrimaryGeneratorAction(fYourDetector);
SetUserAction(primaryAction);

YourRunActionx runAction = new YourRunAction(fYourDetector, primaryAction);
SetUserAction(runAction);

YourEventActionx eventAction = new YourEventAction();
SetUserAction(eventAction);

SetUserAction(new YourSteppingAction(fYourDetector, eventAction));

G4VUserActionlnitialization (2/2)

void YourActionInitialization::BuildForMaster() const

{

SetUserAction(new YourRunAction(fYourDetector));

void YourActionInitialization::Build() const

{

YourPrimaryGeneratorActionx primaryAction = new YourPrimaryGeneratorAction(fYourDetector);
SetUserAction(primaryAction);

YourRunActionx runAction = new YourRunAction(fYourDetector, primaryAction);
SetUserAction(runAction);

YourEventActionx eventAction = new YourEventAction();
SetUserAction(eventAction);

\/ﬁ\y SetUserAction(new YourSteppingAction(fYourDetector, eventAction)); 6

SIMULATION TOOLKIT

G4UserRunAction and G4Run

G4UserRunAction (1/2)

6 GeanT4

 virtual G4Run* G4UserRunAction::GenerateRun()
— This method is invoked at the beginning of BeamOn.

— User hook to provide derived G4Run and create his/her own
concrete class to store some information about the run

— It is invoked before the calculation of the physics table

G4UserRunAction (1/2) - G4Run

6" Geant4
 virtual G4Run* G4UserRunAction::GenerateRun()

— This method is invoked at the beginning of BeamOn.

— User hook to provide derived G4Run and create his/her own
concrete class to store some information about the run

— It is invoked before the calculation of the physics table.

But what is this G4Run? Or more exactly, YourRun derived from G4Run
— Think about it as a (thread local) data with a merge functionality

— An instance of YourRun is automatically generated for each thread
(both workers and master) by calling the above GenerateRun()
method of YourRunAcion derived from G4UserRunAction

G4Run* YourRunAction::GenerateRun()

{

fYourRun = new YourRun(fYourDetector, fYourPrimary);

return fYourRun;

G4UserRunAction (1/2) - G4Run

6" Geant4
 virtual G4Run* G4UserRunAction::GenerateRun()

— This method is invoked at the beginning of BeamOn.

— User hook to provide derived G4Run and create his/her own
concrete class to store some information about the run

— It is invoked before the calculation of the physics table.

* But what is this G4Run? Or more exactly, YourRun derived from G4Run
— Think about it as a (thread local) data with a merge functionality

— An instance of YourRun is automatically generated for each thread
(both workers and master) by calling the above GenerateRun()
method of YourRunAcion derived from G4UserRunAction

— The base virtual void G4Run::Merge(const G4Run*) method
* needs to be implemented by your derived YourRun

* how to merge your local (worker) YourRun data to the global
(master) YourRun data

it is invoked by the end of the run to merge local data collected
by the individual workers during the run
D=

G4UserRunAction (1/2) - G4Run

6" Geant4
 virtual G4Run* G4UserRunAction::GenerateRun()

— This method is invoked at the beginning of BeamOn.

— User hook to provide derived G4Run and create his/her own
concrete class to store some information about the run

— It is invoked before the calculation of the physics table.

Does it make G4VUserActionlnitialization::Build() and

BuildForMaster() clearer?

— The base virtual void G4Run::Merge(const G4Run*) method
* needs to be implemented by your derived YourRun

* how to merge your local (worker) YourRun data to the global
(master) YourRun data

it is invoked by the end of the run to merge local data collected

bi the individual workers durini the run

G4UserRunAction (1/2)

6" Geant4
 virtual G4Run* G4UserRunAction::GenerateRun()

— This method is invoked at the beginning of BeamOn.

— User hook to provide derived G4Run and create his/her own
concrete class to store some information about the run

— It is invoked before the calculation of the physics table.

 virtual void G4UserRunAction::BeginOfRunAction(const G4Run¥*)
— Invoked before entering the event loop

— Typical use of this method would be to initialize and/or book
histograms for a particular run

— This method is invoked after initialisation of the physics tables R

A 4

— Note, you will access here your (thread local) YourRun object
constructed when the above GenerateRun() method was
invoked!

G4UserRunAction (2/2)

6 GeanT4

 virtual void G4UserRunAction::EndOfRunAction(const G4Run*)
— This method is invoked at the very end of the run processing

— It is typically used for a simple analysis of the processed run and
writing the results.

A 4

G4bool G4UserRunAction::IsMaster() is a useful base class method

— Commonly, a MT simulation will have several YourRunAction
instances:

- a single master-thread instance that is constructed in the
G4VUserActionlnitialization::BuildForMaster() method

» and several worker-thread instances that are constructed in
the G4VUserActionlnitialization::Build() method

— provides the ability to identify the single master-thread instance

G4UserRunAction (2/2)

void YourRunAction::EndOfRunAction(const G4Runx)

{

if (IsMaster())
{

fYourRun->EndOfRunSummary() ;
}

}

* G4bool G4UserRunAction::IsMaster() is a useful base class method

— Commonly, a MT simulation will have several YourRunAction
instances:

- a single master-thread instance that is constructed in the

G4VUserActionlnitialization::BuildForMaster() method

» and several worker-thread instances that are constructed in
the G4VUserActionlnitialization::Build() method

— provides the ability to identify the single master-thread instance

CE/RW ol AR
) Dl AN

14

SIMULATION TOOLKIT

G4UserEventAction

G4UserEventAction

SIMULATION TOOLKIT

« virtual void BeginOfEventAction(const G4Event*)

— This method is invoked before converting the primary
particles to G4Track objects, i.e. before a new event
processing

— A typical use of this method would be to (re)-initialize
and/or book histograms for a particular event

« virtual void EndOfEventAction(const G4Event*)

— This method is invoked at the very end of the event
processing

— Typically used for a simple analysis of the processed
event or to fill/propagate the event related
information/data (collected during the event
processing) to the Run (YourRun)

SIMULATION TOOLKIT

G4UserTrackingAction and G4Track

G4Track

6 GeanT4

e GATrack:

a G4Track object represents/describes the state of a particle that is under simulation in
a given instant of the time (i.e. a given time point)

a snapshot of a particle without keeping any information regarding the past

its G4ParticleDefinition stores static particle properties (charge, mass, etc.) as it
describes a particle type (e.g. G4Electron)

its G4DynamicParticle stores dynamic particle properties (energy, momentum, etc.)

while all G4Track-s, describing the same particle type, share the same, unique
G4ParticleDefinition object of the given type (e.g. G4Electron) while each

individual track has its own G4DynamicParticle object

the G4Track object is propagated in a step-by-step way during the simulation and the
dynamic properties are continuously updated to reflect the current state

manager: G4TrackingManager; optional user hook: G4UserTrackingAction

step-by-step? what about the difference between two such states within a step?

G4UserTrackingAction

6" Geant4
* Provides user hooks to access a particle track at the
beginning and end of the corresponding particle’s
lifetime
 virtual void BeginOfTrackingAction(const G4Track*) Jracks

— Invoked at the beginning of a particle lifetime
(before start tracking)

virtual void EndOfTrackingAction(const G4Track®)

— Invoked at the end of a particle lifetime (at the
end of tracking) that can be due to:

* leaves the outermost (World) volume i.e. goes out
of the simulation universe

 participates in a destructive interaction (e.g. decay
or photoelectric absorption, ect.)

emmm—— —

* its kinetic energy becomes zero and doesn't have
(“at-rest”) interaction that could happen

* the user decided to (artificially) stop tracking this
particle and kill (e.g. in the User Stepping Action)

SIMULATION TOOLKIT

G4UserSteppingAction and G4Step

G4Step

6" Geant4
» GAStep:
- a G4Step object can provide the information regarding the change in the state of the
particle (that is under tracking) within a simulation step (i.e. delta)

- has two G4StepPoint-s, pre- and post-step points, that stores information (position,
direction, energy, material, volume, etc...) that belong to the corresponding point (space/time/
step)

- these are updated in a step-by-step way: the post-step point of the previous step becomes
the pre-step point of the next step (when the next step starts)

- (important) if a step is limited by the geometry (i.e. by a volume boundary), the post-step
point:

» physically stands on the boundary (the step status of the post step pointi.e.
G4Step: :GetPostStepPoint () ->GetStepStatus () IS fGeomBoundary)
* logically belongs to the next volume

- since these “boundary” G4Step-s have information both regarding the previous and the

next volumes/materials, boundary processes (e.g. reflection, refractions and transition
radiation) can be simulated

Boundary

G4Step

6 GeanT4
- G4Step:

- a G4Step object can provide the information regarding the change in the state of the
particle (that is under tracking) within a simulation step (i.e. delta)

- has two G4StepPoint-s, pre- and post-step points, that stores information (position,
direction, energy, material, volume, etc...) that belong to the corresponding point (space/time/
step)

- these are updated in a step-by-step way: the post-step point of the previous step becomes
the pre-step point of the next step (when the next step starts)

- (important) if a step is limited by the geometry (i.e. by a volume boundary), the post-step
point:

» physically stands on the boundary (the step status of the post step pointi.e.
G4Step: :GetPostStepPoint () ->GetStepStatus () IS fGeomBoundary)

* logically belongs to the next volume

- since these “boundary” G4Step-s have information both regarding the previous and the
next volumes/materials, boundary processes (e.g. reflection, refractions and transition
radiation) can be simulated

- the G4Track object, that is under tracking i.e. generates information for the G4Step object,
can be obtained from the step by the G4Step: :GetTrack () method and the other way
around G4Track: :GetStep ()

- manager: G4SteppingManager; optional user hook: G4UserSteppingAction

G4UserSteppingAction

6 Geant4
Provides user hook to a particle step e Steps
virtual void UserSteppingAction(const G4Step*) It
— Invoked after each simulation step '<i
— A step (its post-step point) can be defined by 1

» A physical process (e.g. ionization, decay)
» Transportation step: volume boundary
Used for accessing any information regarding the given step

The most frequently called user hook: think about
computing performance whatever you do here (e.g. avoid
things like string comparisons, etc.)!

G4UserSteppingAction

6" Geant4
How to get information regarding the simulation when the castep* thestep iS given?

G4StepPointx preStp

theStep—>GetPreStepPoint();

G4VPhysicalVolumex physVol = preStp->GetPhysicalVolume();

G4double stpEdep = theStep->GetTotalEnergyDeposit();
G4double stpLength = theStep->GetStepLength();
G4Tracksk theTrack = theStep—>GetTrack();

const G4ParticleDefinitionx partDef theTrack—->GetParticleDefinition();

const G4DynamicParticlex partDyn = theTrack->GetDynamicParticle();
G4double partCharge = partDef->GetPDGCharge();

G4double postStpEkin = theStep—>GetPostStepPoint()->GetKineticEnergy();
G4double preStpEkin = preStp—>GetKineticEnergy();

6 GeanT4

Recall again an example: the Final application in the git repo

G4VUserActionlnitialization

void YourActionInitialization::BuildForMaster() const

{

SetUserAction(new YourRunAction(fYourDetector));

void YourActionInitialization::Build() const

{

YourPrimaryGeneratorActionx primaryAction = new YourPrimaryGeneratorAction(fYourDetector);
SetUserAction(primaryAction);

YourRunActionx runAction = new YourRunAction(fYourDetector, primaryAction);
SetUserAction(runAction);

YourEventActionx eventAction = new YourEventAction();
SetUserAction(eventAction);

SetUserAction(new YourSteppingAction(fYourDetector, eventAction));

G4UserRunAction

6 GEANT4

G4Runx YourRunAction::GenerateRun()

{

fYourRun = new YourRun(fYourDetector, fYourPrimary);
return fYourRun;

}

void YourRunAction::BeginOfRunAction(const G4Runx

{
if (fIsEdepHistogramUICmdInvoked)

{

fYourRun—->SetEdepHisto(fEdepHistFileName, fEdepHistMinEnergy,
fEdepHistMaxEnergy, fEdepHistNumBins);

}

void YourRunAction::EndOfRunAction(const G4Runx)

{

if (IsMaster())

{
fYourRun—>EndOfRunSummary() ;

}

G4UserEventAction

6 GEANT4

void YourEventAction::BeginOfEventAction(const G4Eventx

{
fEdepPerEvt

fChTrackLengthPerEvt

void YourEventAction::EndOfEventAction(const G4Eventx)

{
YourRunx currentRun = static_cast< YourRunx > (G4RunManager::GetRunManager()->GetNonConstCurrentRun());
currentRun->AddEnergyDepositPerEvent(fEdepPerEvt);

currentRun->AddChTrackLengthPerEvent(fChTrackLengthPerEvt);
currentRun->FillEdepHistogram(fEdepPerEvt);

G4UserEventAction

6 GEANT4

void YourEventAction::BeginOfEventAction(const G4Eventx
{

fEdepPerEvt

fChTrackLengthPerEvt
}

G4SteppingAction::UserSteppingAction() populates per event data !

void YourEventAction::EndOfEventAction(const G4Eventx)

{

YourRunx currentRun = static_cast< YourRunx > (G4RunManager::GetRunManager()->GetNonConstCurrentRun());

currentRun->AddEnergyDepositPerEvent(fEdepPerEvt);
currentRun->AddChTrackLengthPerEvent(fChTrackLengthPerEvt);
currentRun->FillEdepHistogram(fEdepPerEvt);

G4UserSteppingAction

void YourSteppingAction::UserSteppingAction(const G4Stepx theStep)
{

if (theStep—>GetPreStepPoint()->GetTouchableHandle()->GetVolume()
I= fYourDetector->GetTargetPhysicalVolume()) return;

theStep->GetTotalEnergyDeposit();
theStep—>GetStepLength();

const G4double eDep
const G4double trackL

const G4ParticleDefinitionx pDef = theStep—>GetTrack()->GetParticleDefinition();
if (pDef->GetPDGCharge() != 0.0)
{

fYourEventAction->AddChargedTrackLengthPerStep(trackL);
}

fYourEventAction->AddEnergyDepositPerStep(eDep);

SIMULATION TOOLKIT

Questions?

