
User Actions 
aka ‘Extracting Useful Information’

Mihaly Novak (CERN)
Geant4 Beginners Course
25-31 May 2021 CERN

Some of this material was prepared by Makoto Asai (SLAC).

User Actions - Overview

• mandatory Users actions classes
– G4VUserActionInitialization
– G4VUserPrimaryGeneratorAction

• optional Geant4 User Action classes
– G4UserRunAction
– G4UserEventAction
– G4UserStackingAction (not included today)
– G4UserTrackingAction
– G4UserSteppingAction

• fully customizable (empty by default)
• user action classes are used to setup and/or modify

the simulation or collect information about the run
– allow to take actions specific for the given

simulation
• simulate only relevant particles
• save specific information, fill histograms
• speed-up simulation by applying different

limits
• G4Run also plays an important role

!2

R
u
n

Event
Stack

Event
Stack

Event
Stack

Event

Stack

Tracks
Steps

G4VUserActionInitialization

!3

G4VUserActionInitialization (1/2)

• virtual void G4VUserActionInitialization::Build() const = 0;
– Pure virtual method(mandatory) to be implemented by the user

to instantiate all (mandatory and optional) user action objects
– At least, the mandatory UserPrimaryGeneratorAction needs to be

instantiated here
– This method is invoked by each worker

• virtual void G4VUserActionInitialization::BuildForMaster()
– This method is invoked only by the master
– Note, that it’s not pure virtual (invoked only in MT)
– For instantiating only UserRunAction
– This will be the master’s UserRunAction
– This UserRunAction might or might not be the same as for workers

(its IsMaster() method will return true)

!4

• G4VUserActionInitialization base class provides the following methods
to set user actions, that should be used inside the Build() interface
method to set the user actions after their construction:
– void SetUserAction(G4VUserPrimaryGeneratorAction*) const;
– void SetUserAction(G4UserRunAction*) const;
– void SetUserAction(G4UserEventAction*) const;
– void SetUserAction(G4UserStackingAction*) const;
– void SetUserAction(G4UserTrackingAction*) const;
– void SetUserAction(G4UserSteppingAction*) const;

!5

G4VUserActionInitialization (2/2)

• G4VUserActionInitialization base class provides the following methods
to set user actions, that should be used inside the Build() interface
method to set the user actions after their construction:
– void SetUserAction(G4VUserPrimaryGeneratorAction*) const;
– void SetUserAction(G4UserRunAction*) const;
– void SetUserAction(G4UserEventAction*) const;
– void SetUserAction(G4UserStackingAction*) const;
– void SetUserAction(G4UserTrackingAction*) const;
– void SetUserAction(G4UserSteppingAction*) const;

!6

G4VUserActionInitialization (2/2)

G4UserRunAction and G4Run

!7

G4UserRunAction (1/2)

• virtual G4Run* G4UserRunAction::GenerateRun()
– This method is invoked at the beginning of BeamOn.
– User hook to provide derived G4Run and create his/her own

concrete class to store some information about the run
– It is invoked before the calculation of the physics table

!8

• virtual G4Run* G4UserRunAction::GenerateRun()
– This method is invoked at the beginning of BeamOn.
– User hook to provide derived G4Run and create his/her own

concrete class to store some information about the run
– It is invoked before the calculation of the physics table.

• But what is this G4Run? Or more exactly, YourRun derived from G4Run
– Think about it as a (thread local) data with a merge functionality
– An instance of YourRun is automatically generated for each thread

(both workers and master) by calling the above GenerateRun()
method of YourRunAcion derived from G4UserRunAction

!9

G4UserRunAction (1/2) - G4Run

• virtual G4Run* G4UserRunAction::GenerateRun()
– This method is invoked at the beginning of BeamOn.
– User hook to provide derived G4Run and create his/her own

concrete class to store some information about the run
– It is invoked before the calculation of the physics table.

• But what is this G4Run? Or more exactly, YourRun derived from G4Run
– Think about it as a (thread local) data with a merge functionality
– An instance of YourRun is automatically generated for each thread

(both workers and master) by calling the above GenerateRun()
method of YourRunAcion derived from G4UserRunAction

– The base virtual void G4Run::Merge(const G4Run*) method
• needs to be implemented by your derived YourRun
• how to merge your local (worker) YourRun data to the global

(master) YourRun data
• it is invoked by the end of the run to merge local data collected

by the individual workers during the run

!10

G4UserRunAction (1/2) - G4Run

• virtual G4Run* G4UserRunAction::GenerateRun()
– This method is invoked at the beginning of BeamOn.
– User hook to provide derived G4Run and create his/her own

concrete class to store some information about the run
– It is invoked before the calculation of the physics table.

• But what is this G4Run? Or more exactly, YourRun derived from G4Run
– Think about it as a (thread local) data with a merge functionality
– An instance of YourRun is automatically generated for each thread

(both workers and master) by calling the above GenerateRun()
method of YourRunAcion derived from G4UserRunAction

– The base virtual void G4Run::Merge(const G4Run*) method
• needs to be implemented by your derived YourRun
• how to merge your local (worker) YourRun data to the global

(master) YourRun data
• it is invoked by the end of the run to merge local data collected

by the individual workers during the run

!11

Does it make G4VUserActionInitialization::Build() and
BuildForMaster() clearer?

G4UserRunAction (1/2) - G4Run

• virtual G4Run* G4UserRunAction::GenerateRun()
– This method is invoked at the beginning of BeamOn.
– User hook to provide derived G4Run and create his/her own

concrete class to store some information about the run
– It is invoked before the calculation of the physics table.

• virtual void G4UserRunAction::BeginOfRunAction(const G4Run*)
– Invoked before entering the event loop
– Typical use of this method would be to initialize and/or book

histograms for a particular run
– This method is invoked after initialisation of the physics tables
– Note, you will access here your (thread local) YourRun object

constructed when the above GenerateRun() method was
invoked!

!12

R
u
n

G4UserRunAction (1/2)

• virtual void G4UserRunAction::EndOfRunAction(const G4Run*)
– This method is invoked at the very end of the run processing
– It is typically used for a simple analysis of the processed run and

writing the results.

• G4bool G4UserRunAction::IsMaster() is a useful base class method
– Commonly, a MT simulation will have several YourRunAction

instances:
• a single master-thread instance that is constructed in the
G4VUserActionInitialization::BuildForMaster() method

• and several worker-thread instances that are constructed in
the G4VUserActionInitialization::Build() method

– provides the ability to identify the single master-thread instance

!13

R
u
n

G4UserRunAction (2/2)

• virtual void G4UserRunAction::EndOfRunAction(const G4Run*)
– This method is invoked at the very end of the run processing
– It is typically used for a simple analysis of the processed run and

writing the results.

• G4bool G4UserRunAction::IsMaster() is a useful base class method
– Commonly, a MT simulation will have several YourRunAction

instances:
• a single master-thread instance that is constructed in the
G4VUserActionInitialization::BuildForMaster() method

• and several worker-thread instances that are constructed in
the G4VUserActionInitialization::Build() method

– provides the ability to identify the single master-thread instance

!14

R
u
n

G4UserRunAction (2/2)

G4UserEventAction

!15

• virtual void BeginOfEventAction(const G4Event*)
– This method is invoked before converting the primary

particles to G4Track objects, i.e. before a new event
processing

– A typical use of this method would be to (re)-initialize
and/or book histograms for a particular event

• virtual void EndOfEventAction(const G4Event*)
– This method is invoked at the very end of the event

processing
– Typically used for a simple analysis of the processed

event or to fill/propagate the event related
information/data (collected during the event
processing) to the Run (YourRun)

!16

R
u
n

Event

Event

G4UserEventAction

G4UserTrackingAction and G4Track

!17

!18

• G4Track:
- a G4Track object represents/describes the state of a particle that is under simulation in

a given instant of the time (i.e. a given time point)
- a snapshot of a particle without keeping any information regarding the past
- its G4ParticleDefinition stores static particle properties (charge, mass, etc.) as it

describes a particle type (e.g. G4Electron)

- its G4DynamicParticle stores dynamic particle properties (energy, momentum, etc.)

- while all G4Track-s, describing the same particle type, share the same, unique
G4ParticleDefinition object of the given type (e.g. G4Electron) while each
individual track has its own G4DynamicParticle object

- the G4Track object is propagated in a step-by-step way during the simulation and the
dynamic properties are continuously updated to reflect the current state

- manager: G4TrackingManager; optional user hook: G4UserTrackingAction
- step-by-step? what about the difference between two such states within a step?

G4Track

G4UserTrackingAction

• Provides user hooks to access a particle track at the
beginning and end of the corresponding particle’s
lifetime

• virtual void BeginOfTrackingAction(const G4Track*)
– Invoked at the beginning of a particle lifetime

(before start tracking)
• virtual void EndOfTrackingAction(const G4Track*)

– Invoked at the end of a particle lifetime (at the
end of tracking) that can be due to:
• leaves the outermost (World) volume i.e. goes out

of the simulation universe
• participates in a destructive interaction (e.g. decay

or photoelectric absorption, ect.)
• its kinetic energy becomes zero and doesn't have

(“at-rest”) interaction that could happen
• the user decided to (artificially) stop tracking this

particle and kill (e.g. in the User Stepping Action)

!19

Event

Tracks

G4UserSteppingAction and G4Step

!20

• G4Step:
- a G4Step object can provide the information regarding the change in the state of the

particle (that is under tracking) within a simulation step (i.e. delta)
- has two G4StepPoint-s, pre- and post-step points, that stores information (position,

direction, energy, material, volume, etc…) that belong to the corresponding point (space/time/
step)

- these are updated in a step-by-step way: the post-step point of the previous step becomes
the pre-step point of the next step (when the next step starts)

- (important) if a step is limited by the geometry (i.e. by a volume boundary), the post-step
point:
• physically stands on the boundary (the step status of the post step point i.e.
G4Step::GetPostStepPoint()->GetStepStatus() is fGeomBoundary)

• logically belongs to the next volume
• since these “boundary” G4Step-s have information both regarding the previous and the

next volumes/materials, boundary processes (e.g. reflection, refractions and transition
radiation) can be simulated

- the G4Track object, that is under tracing i.e. generates information for the G4Step object,
can be obtained by the G4Step::GetTrack() method and the other way around
G4Track::GetStep()

!21Pre-step point
Post-step point

Step
Boundary

G4Step

• G4Step:
- a G4Step object can provide the information regarding the change in the state of the

particle (that is under tracking) within a simulation step (i.e. delta)
- has two G4StepPoint-s, pre- and post-step points, that stores information (position,

direction, energy, material, volume, etc…) that belong to the corresponding point (space/time/
step)

- these are updated in a step-by-step way: the post-step point of the previous step becomes
the pre-step point of the next step (when the next step starts)

- (important) if a step is limited by the geometry (i.e. by a volume boundary), the post-step
point:
• physically stands on the boundary (the step status of the post step point i.e.
G4Step::GetPostStepPoint()->GetStepStatus() is fGeomBoundary)

• logically belongs to the next volume
• since these “boundary” G4Step-s have information both regarding the previous and the

next volumes/materials, boundary processes (e.g. reflection, refractions and transition
radiation) can be simulated

- the G4Track object, that is under tracking i.e. generates information for the G4Step object,
can be obtained from the step by the G4Step::GetTrack() method and the other way
around G4Track::GetStep()

- manager: G4SteppingManager; optional user hook: G4UserSteppingAction

!22

G4Step

• Provides user hook to a particle step
• virtual void UserSteppingAction(const G4Step*)

– Invoked after each simulation step
– A step (its post-step point) can be defined by

• A physical process (e.g. ionization, decay)
• Transportation step: volume boundary

• Used for accessing any information regarding the given step
• The most frequently called user hook: think about

computing performance whatever you do here (e.g. avoid
things like string comparisons, etc.)!

!23

Tracks Steps

G4UserSteppingAction

How to get information regarding the simulation when the G4Step* theStep is given?
- optional user action class, that gives the possibility to obtain information after each steps
- its UserSteppingAction(const G4Step* theStep) method is called at the end of each

step by providing access to the G4Step object representing the simulation step that has just done
(let’s see this class in Geant4 /source/tracking/include/G4UserSteppingAction.hh)

- users can implement their own YourSteppingAction class by extending the
G4UserSteppingAction base class, provide their own implementation of the UserStepping
Action(const G4Step* theStep) interface method and create/register the corresponding
object in the ActionInitialisation::Build() interface method (see later)

!24

How to get information regarding the simulation when the G4Step* theStep is given?

G4UserSteppingAction

Recall again an example: the Final application in the git repo

!25

!26

G4VUserActionInitialization

!27

G4UserRunAction

!28

G4UserEventAction

!29

G4UserEventAction

G4SteppingAction::UserSteppingAction() populates per event data !

!30

G4UserSteppingAction

!31

Questions?

