

Beam Diagnostics for HEL

R.Veness, T.Lefevre, M.Wendt, C.Zamantzas for SY/BI Thanks to: A.Rossi, G.Schneider, I.Papazoglou, J.Storey,

HEL Production Kick-off meeting, 13th April 2021

Ray Veness /HEL Production Kickoff / BI instruments

Contents

Beam Position Monitors (BPMs) BPM challenges for the HEL **7** Technical solutions Beam Gas Curtain Monitor (BGC) BGC principle and collaboration structure Project roadmap (including HEL test stand) Beam Loss Monitors (BLMs) Installation of 8 standard LHC BLMs (no further technical details given) BI instrumentation manpower and material costs \bigcirc Summary, milestones and open issues

The HEL BPM Challenge

Coaxial proton (center) and electron beam (hollow) Assuming round / circular co-propagating beams with Gaussian particle distribution Measure the transverse position (x, y) of each beam ⁷ In particular the relative position between both beams, e.g., their center-of-charge (COC) 0.010 E_{top} (zoom) E_{top} E_{inj} СОС-е 0.005 0.02 -0.02 0.04 -0.04 0.02 -0.010 -004 0.02 0.04 -0.0050.010 COC-p -0.02 -0.005 -0.04 -0.010

Beam conditions – beams of very different time structure

Proton beam **Bunched beam, up to 2760 bunches,** 25 ns min. spacing, beam velocity: $\beta \approx 1$ **Provide a set of the set of the** 4σ bunch length: ~1 ns **\checkmark** Transverse beam size: ~0.5...1.0 mm ($\sigma_x \approx \sigma_y$) Hollow electron beam 🖓 "Quasi" DC beam, nominal beam current: 5 A • (operation at lower beam current, 0.1 A, to be studied) 4 Abort gap injection, $t_{5A} \approx 86.4 \ \mu s$, $t_{0A} \approx 2.5 \ \mu s$, t_r, t_f (10-90%) ≈ 200 ns • Other patterns to be expected with $t_{5A,min} \approx 1.2 \ \mu s$ **Given Seam energy:** 10...15 keV ($β \approx 0.2...0.24$) **Transverse beam size:** $ID \approx 2...8 \text{ mm}, OD \approx 4...16 \text{ mm} (OD-ID \approx 8\sigma)$

Stripline BPM

- 40 cm long electrodes, 60 mm aperture
 - **For improved coupling to the e-beam**
 - Couples only during the e-beam switching time!
- Difficult integration
 - **7** Tight radial space, 120 mm diameter warm bore
 - Requires modifications of the flanges to pass signal cables
- Present draft design has some issues
 - Mechanical supports of the striplines causes strong signal reflections
 - Details of the feedthrough pin-to-electrode contact not worked out
 - Requires a design update!

BGC requirements and principle

Functional requirements

 \mathcal{O}

 $\langle \gamma \rangle$

- Determine the beam centroid of a nominal intensity and emittance HL-LHC proton beam at 7 TeV to better than 100 µm within a fixed, 2D image plane in less than 10 seconds
- Simultaneously produce the 2D image of a hollow electron beam, with the nominal operating parameters of 15keV, 5A, in the same frame of reference as the proton beam image, within 1 second.

Technical challenges

- Different particles, energies, intensities
- Operate in the HEL solenoid environment
 - Limited space for integration, strong magnetic field makes detection of ionized particles impractical

Full functional specification in EDMS:

- https://edms.cern.ch/document/2369616/1.0
- 7 The instrument is specified for nominal HEL operation.
 - Operation for pilot and test conditions is possible with detailed performance to be studied

The BGC collaboration structure

BGC Project roadmap (April 2021)

Summary, milestones and issues

- \bigcirc BI instrumentation requirements for <u>nominal</u> conditions are well understood
 - It is important for the 'in-kind' BGC to have clear acceptance test criteria that are not dependent on availability of LHC beams
 - \checkmark Additional requirements for set-up and non-nominal conditions need to be studied and agreed
- \bigcirc BPM Key milestones and issues
 - \checkmark Approval of Russian in-kind contribution (also for BLMs)
 - \triangleleft Electron beam tests on HEL test stand
- BGC Key outstanding milestones and issues
 - Prototype instrument test on HEL test stand
 - Background gas tests in LHC run 3
 - Prototype instrument tests in LHC run 3
 - Instrument integration in HEL (particularly LSS4R)
- Updated budget
 - $\stackrel{\scriptstyle \frown}{\sim}$ Bottom-up review of material costs comes within 10% of the original budgets
 - Additional design work for integration of BPMs
 - CERN testing and installation costs for BGC
 - $\stackrel{\scriptstyle \frown}{\scriptstyle \sim}$ Need a review of required and available spares
 - BI additional MPA costs (VIA, PhD, PJAS)
 - Additional requests to VSC add costs for BGC (Study and design manpower, installation manpower, vacuum controls hardware and software)
 - Important that this LHC-operation-critical task stays with the CERN technical group

Backup slides follow

Ray Veness /HEL Production Kickoff / BI instruments

Backup: Button BPM for the HEL?

- Button BPM advantages
 - **Simple, compact, lower costs**
 - **Can have more than 2 BPM per HEL**
 - **Different read-out system based on PLL lock-in technique**
 - Same analog signal path for e-beam and p-beam signals
 - Improved long term reproducibility for the relative position measurement between both beams
 - Measurement of the e-beam along the entire beam passage

 ⁷ The stripline BPM measures only during the 200 ns switching transient, for *dI/dt* ≠ 0
- Button BPM disadvantage

Requires an intensity modulation of the e-beam, e.g., using the grid-electrode of the gun

- At a high frequency near a bunch harmonic, e.g., $f_{mod} \approx 40$, or 80, or 120 MHz
- The modulation index can be low, a few 10^{-3} should be sufficient
- Feasibility to be tested at the HEL test stand

Expected signal integration times for electron and proton beam profiles

Table 2: Average integration time $\langle t_i \rangle_{MCP}$ for the detection of one emitted photon and total estimated integration time for the three working gases considered, using the parameters defined in Table 1.

Projectile	Emitter	λ [nm]	σ [cm ²]	I [A]	η_{P^c}	Estimated Integration time [s]	
						Single photon <ti>MCP</ti>	Total protons: 10 ² photons electrons: 10 ⁴ photons
electron	N_2^+	391.4	9.1·10 ⁻¹⁹	5	0.19	2.9.10-7	0.003
proton	N_2^+	391.4	3.7.10-20	1	0.19	3.6.10-5	0.004
electron	Ne	585.4	$1.4 \cdot 10^{-20}$	5	0.09	4.0.10-5	0.4
proton	Ne	585.4	4.7.10-22	1	0.09	5.9·10 ⁻³	0.59
electron	Ar	750.4 & 751.5	7.4.10-20	5	0.02	3.4.10-5	0.34
proton	Ar	750.4 & 751.5	3.3.10-21	1	0.02	3.8.10-3	0.38
electron	Ar^+	454.5 & 476.5	9.9·10 ⁻²¹	5	0.20	2.5.10-5	0.25
proton	Ar ⁺	454.5 & 476.5	1.7.10-21	1	0.20	7.4.10-4	0.074

Table 1: Parameters for integration time estimation

curtain density n	$2.5 \cdot 10^{10} \text{ cm}^{-3}$		
curtain thickness d	0.5 mm		
optics transmission T	0.85		
filter transmission T _f	0.8		
solid angle Ω	$40\pi \cdot 10^{-4}$ sr		
photocathode efficiency η_{pc}	λ-dependent [6]		
MCP efficiency η_{MCP}	0.75		
average proton current I _p	1 A		
DC electron current Ie	5 A		

From: Development of a beam-gas curtain profile monitor for the high luminosity upgrade of the LHC. R.Veness^{Rev} den Bic¹ 2018^{roduction} Kickoff / BI instruments