au decay mode identification in a LAr electromagnetic calorimeter Status update

> Katinka Wandall Supervisor: Mogens Dam

> > Niels Bohr Institute

Noble Liquid Calorimetry Meeting March 11, 2021

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Project goal:

Develop an algorithm in FCCSW for distinguishing different decay channels of the τ lepton in the electromagnetic calorimeter. Most important ingredient is an algorithm for π^0 identification.

Steps:

- Build π⁰ reconstruction algorithm based on fast simulation (Delphes)
- Set up full detector geometry and clustering algorithm
- Study and develop algorithm for photon reconstruction in full simulation

- Develop method for separating photons from (merged) π⁰'s
- Minimizing the off-diagonal terms of the migration matrix by forming a separation mechanism for different τ decay channels

Project goal:

Develop an algorithm in FCCSW for distinguishing different decay channels of the τ lepton in the electromagnetic calorimeter. Most important ingredient is an algorithm for π^0 identification.

Steps:

- Build π⁰ reconstruction algorithm based on fast simulation (Delphes)
- Set up full detector geometry and clustering algorithm
- Study and develop algorithm for photon reconstruction in full simulation

- Develop method for separating photons from (merged) π⁰'s
- Minimizing the off-diagonal terms of the migration matrix by forming a separation mechanism for different τ decay channels

Simulated LAr geometry

Simple (unrealistic) LAr geometry:

- 70 concentric cylinders
- Each layer is 5.7 mm thick
- PCB simulated by making glue layer thicker and an average material constant is used

Simulation:

 $256 \ cm$

- All particles generated at $\theta = \frac{\pi}{2}, \ \phi = 0$
- All geant4 hits saved to root output file

(日) (四) (日) (日) (日)

Figure: One sandwich layer

Geant4 hits to cell hits

- Calorimeter divided into 10 layers in the r-direction. 680 cells in φ and 300 cells in z-direction
- cell size ~ 2 cm×2 cm×4cm
- All geant hits are assigned a cell
- Illuminate evenly over cell surface: position of entire event displaced randomly within the area of one cell

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Clustering

 CLUE^1 inspired method using two (adjustable) thresholds:

thlow = 12.5 MeV, thhigh = 25 MeV

- 1. For each cell, point to highest energy (of 26) neighbours exceeding thlow
 - If the cell is local maximum and exceeds thhigh it will be a seed
 - For each cell, define list of followers (cells that point to it)
- 2. Collect clusters
 - Start by seed cells (local energy maximum) and collect followers iteratively
- 3. Merging of clusters
 - If two clusters have neighbouring cells with energy exceeding thlow, merge the two clusters

¹arXiv:2001.09761 [physics.ins-det]

Clustering - 10 GeV photons

◆□▶ ◆□▶ ◆三▶ ◆三▶ ●□ ● ●

Clustering - 20 GeV π^+

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Leading and sub-leading cluster: Reconstructed energy

Leading cluster

Sub-leading clusters

▲□▶ ▲□▶ ▲臣▶ ★臣▶ = 臣 = のへで

Leading and sub-leading cluster: Number of layers

Leading cluster

Sub-leading clusters

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 _ のへで

Leading and sub-leading cluster: Start layer

Leading cluster

Sub-leading clusters

・ロト ・ 同ト ・ ヨト ・ ヨト

э

Leading and sub-leading cluster

Variables for separation:

- Energy of clusters
- Number of layers of clusters
- Start layer of clusters
- Possibly geometrical proximity to primary cluster

Next steps:

- Combining these variables to achieve best possible separation
 - Full au decays may be needed
 - Maybe using a likelihood method inspired by ALEPH²

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

²https://doi.org/10.1007/s002880050134

Investigating separation of EM and hadronic showers

Mean longitudinal energy profile of EM shower:

$$\frac{dE}{dt} = E_0 b \frac{(bt)^{a-1} e^{-bt}}{\Gamma(a)}$$

Figure: D.E. Groom et al., Passage of Particles Through Matter

Method:

Classification of showers by fitting the distribution of EM longitudinal shower profile to each shower and determining the level of agreement by $\delta = \frac{1}{E_0} \sum_i \left| \Delta E_{obs}^i - \Delta E_{EM}^i \right|$ inspired by PandoraPFA³

³arXiv:0907.3577 [physics.ins-det]

Investigating separation of EM and hadronic showers

◆□ > ◆□ > ◆豆 > ◆豆 > ・豆

Next steps:

- Fit to each individual shower
- Make separation based on fits

Separation of single photons from π^0 's based on shape

Comparisons the major and minor axis of clusters. This is calculated by diagonalizing the covariance matrix for each layer of the ECAL

・ロト・日本・日本・日本・日本・日本

Separation of single photons from π^0 's based on shape Results:

・ロト・日本・日本・日本・日本・日本

Next steps

- Implement separation of primary and secondary clusters
- Implement the separation of EM and hadronic showers
- Implement separation of single photons and merged π^0 's
- Combine all separation algorithms and incorporate the π⁰ reconstruction method

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

• Create and optimize the migration matrix for au decays