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Project goal:

Develop an algorithm in FCCSW for distinguishing different decay
channels of the τ lepton in the electromagnetic calorimeter. Most
important ingredient is an algorithm for π0 identification.

Steps:

I Build π0 reconstruction
algorithm based on fast
simulation (Delphes)

I Set up full detector geometry
and clustering algorithm

I Study and develop algorithm
for photon reconstruction in
full simulation

I Develop method for separating
photons from (merged) π0’s

I Minimizing the off-diagonal
terms of the migration matrix
by forming a separation
mechanism for different τ
decay channels
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Simulated LAr geometry

Simple (unrealistic) LAr
geometry:

I 70 concentric cylinders

I Each layer is 5.7 mm thick

I PCB simulated by making glue
layer thicker and an average
material constant is used

Figure: One sandwich layer

Simulation:
I All particles generated at

θ = π
2 , φ = 0

I All geant4 hits saved to root
output file

Figure: Drawing of detector



Geant4 hits to cell hits

I Calorimeter divided into 10
layers in the r-direction. 680
cells in φ and 300 cells in
z−direction

I cell size ∼ 2 cm×2 cm×4cm

I All geant hits are assigned a
cell

I Illuminate evenly over cell
surface: position of entire
event displaced randomly
within the area of one cell

fcalib = 7.92 σE
E

= 7.7%√
E

Smearing of event position



Clustering

CLUE1 inspired method using two (adjustable) thresholds:
thlow = 12.5 MeV, thhigh = 25 MeV

1. For each cell, point to highest energy (of 26) neighbours
exceeding thlow
I If the cell is local maximum and exceeds thhigh it will be a seed
I For each cell, define list of followers (cells that point to it)

2. Collect clusters
I Start by seed cells (local energy maximum) and collect

followers iteratively

3. Merging of clusters
I If two clusters have neighbouring cells with energy exceeding

thlow, merge the two clusters

1arXiv:2001.09761 [physics.ins-det]



Clustering - 10 GeV photons
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,  E = 10 GeVγParticle: 

N events = 10000

 

0 50 100 150 200 250 300 350 400

Number of cells

0

200

400

600

800

1000

1200

C
ou

nt
s

 
Entries  10000
Mean    179.6
Std Dev     13.69After clustering

Before clustering

,  E = 10 GeVγParticle: 
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⇒ Need of re-calibration



Clustering - 20 GeV π+
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,  E = 20 GeV+πParticle: 

N events = 10000
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,  E = 20 GeV+πParticle: 

N events = 10000

 



Leading and sub-leading cluster: Reconstructed energy
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Fitted values:

,  E = 10 GeVγParticle: 

N events = 10000
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Sub-leading clusters
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Leading and sub-leading cluster: Number of layers
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Sub-leading clusters
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Leading and sub-leading cluster: Start layer
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Leading and sub-leading cluster

Variables for separation:

I Energy of clusters

I Number of layers of clusters

I Start layer of clusters

I Possibly geometrical proximity to primary cluster

Next steps:

I Combining these variables to achieve best possible separation
I Full τ decays may be needed
I Maybe using a likelihood method inspired by ALEPH 2

2https://doi.org/10.1007/s002880050134



Investigating separation of EM and hadronic showers

Mean longitudinal energy
profile of EM shower:

dE

dt
= E0b

(bt)a−1e−bt

Γ(a)

Figure: D.E. Groom et al., Passage of Particles Through Matter

Method:
Classification of showers by fitting the distribution of EM
longitudinal shower profile to each shower and determining the
level of agreement by δ = 1

E0

∑
i

∣∣∆E i
obs − ∆E i

EM

∣∣ inspired by

PandoraPFA3

3
arXiv:0907.3577 [physics.ins-det]



Investigating separation of EM and hadronic showers
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Next steps:

I Fit to each individual shower

I Make separation based on fits



Separation of single photons from π0’s based on shape
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Method:
Comparisons the major and minor
axis of clusters. This is calculated
by diagonalizing the covariance
matrix for each layer of the ECAL
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Separation of single photons from π0’s based on shape

Results:
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Next steps

I Implement separation of primary and secondary clusters

I Implement the separation of EM and hadronic showers

I Implement separation of single photons and merged π0’s

I Combine all separation algorithms and incorporate the π0

reconstruction method

I Create and optimize the migration matrix for τ decays


