Antihydrogen Formation from Cold Nonneutral Plasmas

What

antimatter hyperfine measurement

How

getting antiprotons mixing them with a positron plasma

My contribution

control of plasma shape and density diagnosis of plasma temperature minimizing plasma temperature diagnosis of quantum state distribution

Eric Hunter for the ASACUSA Collaboration and the Stefan Meyer Institute

ASACUSA's spin flip proposal

ASACUSA

Atomic
Spectroscopy and
Collisions Using
Slow Antiprotons

e^+ plasma + \bar{p} plasma \rightarrow H atoms

Simulations of antihydrogen formation suggest:

- 1 maximize interaction of H with e⁺
- 2 minimize plasma temperature

FIG. 1. Antihydrogen bound-state level population distribution after evolution of 10 μ s (circle), 20 μ s (square), and 50 μ s (triangle) and the thermal equilibrium level population distribution (solid line) for positron temperature of $T_e = 50$ K and positron density $n_e = 10^{14}$ m⁻³(with 10⁶ antiprotons).

Control of plasma parameters

length

= electrode potentials

number of particles, temperature

= forced evaporation

density, radius

= rotating wall (next slide)

SDR: Rotating wall in the Strong Drive Regime

'Rotating' electrostatic field creates a torque, when the plasma rotation is slower than the field rotation frequency

→ <u>Plasma rotation frequency asymptotes to RW frequency</u>

The plasma density

$$n_0 = \frac{2\varepsilon_0 m}{q^2} \omega_r (\Omega_c - \omega_r)$$

is proportional to the plasma rotation frequency

→ <u>Plasma density proportional to RW frequency</u>

SDR + EVC = SDREVC

- → Simultaneous control of all plasma parameters
- → Reproducible results independent of initial state

Property	Mean	SD
$r_p \text{ (mm)}$	0.417	0.003
T(K)	360	30
$N_f (10^6)$	11.0	0.3

Newton's law of cooling

$$dT/dt = -\Gamma(T - T_w) + H$$

$$=>T_f=T_w+H/\Gamma$$
Electrode
Temperature

Plasma Heating Rate (expansion and electrode noise)

What if the radiation environment is hotter than the \sim 35 K electrodes?

Measure the temperature of the plasma with the thermal shield in different positions

closed partly open fully open

Field ionizers

One ionizer: measure n-state distribution (# ionized atoms vs. applied voltage)

Two ionizers: measure antihydrogen temperature (time of flight)

Backup slides

Axial Position (cm)

Figure 3.7: Extraction trace for a cold, $N = 3 \cdot 10^6 \text{ e}^-$ plasma. This is the "same" plasma as in Fig. 3.6 after 8 s of resonant cooling. 18

Plasma temperature is usually reduced by reducing RF noise on the electrodes and the plasma expansion rate

These are both very low in our trap.

EVC: **EV**aporative Cooling

Slowly reduce axial electrostatic confinement potential. The most energetic particles escape first

- → Plasma temperature is reduced
- → Plasma space charge set by final well depth

$$\phi(r) = \frac{qnr_p^2}{4\varepsilon_0} \left[1 + 2 \ln \left(\frac{r_w}{r_p} \right) \right] - \frac{qnr^2}{4\varepsilon_0}$$

but plasma radius is not controlled

Purcell Effect

Resonant interaction with cavity modes can increase the cyclotron cooling rate

Cooling Rate

Antimatter and matter in the universe: broken symmetry

The Antiproton Decelerator (AD) at CERN

