Black Holes, Entropy and Holography
Raphaela Wutte, TU Wien

Joint Annual Meeting of the Austrian Physical Society
Swiss Physical Society
2.9.2021
Overview

1. Motivation
2. Gravity in (2+1) Dimensions
3. BTZ Black Hole
4. Asymptotically AdS$_3$ Spacetimes
5. Entropy of BTZ Black Hole
6. Current Research
1.) Motivation

Known since the 70s after seminal works of Hawking, Bekenstein, Bardeen and Carter that black holes behave like thermodynamic systems

• they have a temperature
• they have a large entropy
 – for black hole in center of the milky way $S \sim 10^{88} k_B$

Q: Can this entropy be derived through a microscopic derivation?
2.) Gravity in (2+1) Dimensions

• Useful to consider toy models to address this question
• One such toy model: 3d Einstein gravity
 – No gravitational waves in 3d Einstein gravity
 – Curvature is constant for all solutions of Einstein’s equations

\[R_{\mu\nu\rho\sigma} = \Lambda(g_{\mu\rho}g_{\nu\sigma} - g_{\mu\sigma}g_{\nu\rho}) \]

\(\Lambda \) ... Cosmological constant
2.) Gravity in (2+1) Dimensions

- Depending on cosmological constant, every solution looks locally like:
 - Anti-de-Sitter space (AdS_3) for $\Lambda < 0$
 - de-Sitter space for $\Lambda > 0$
 - Minkowski for $\Lambda = 0$

- Locally 3d Einstein gravity seems trivial
 - Global properties allow for interesting solutions

Raphaela Wutte, TU Wien, raphaela.wutte@tuwien.ac.at
3.) BTZ Black Hole

- 1992 Bañados, Teitelboim, Zanelli found 2-parameter family of solutions to Einstein’s equations with $\Lambda = -\frac{1}{l^2} < 0$

$$ds^2 = -N(r)^2 dt^2 + \frac{1}{N(r)^2} dr^2 + r^2 (d\phi + N\phi(r)dt)^2$$

$$N(r) = -8 G M + \frac{r^2}{l^2} + \frac{16 G^2 J^2}{r^2} \quad N\phi(r) = -\frac{4 G J}{r^2}$$

for $M > 0$ and $|J| \leq M l$ Black Hole
3.) BTZ Black Hole

- BTZ black hole and AdS$_3$ locally the same
- BTZ black hole can be obtained as a quotient of AdS$_3$
 \[
 M = \frac{r_+^2 + r_-^2}{8 \, G \, l^2} \quad J = \frac{r_+ \, r_-}{4 \, G \, l}
 \]
 \[
 S = \frac{A}{4 \, G} = \frac{2 \, \pi \, r_+}{4 \, G} \quad T = \frac{r_+^2 - r_-^2}{2 \, \pi \, l^2 \, r_+}
 \]
- Can we reproduce the entropy of BTZ black hole through a microscopic calculation?

Units are chosen such that $k_B = \hbar = c = 1$
4. Asymptotically AdS3 Spacetimes

• asymptotically AdS$_3$ spacetimes: metric approaches AdS$_3$ space when approaching infinity

$$ds^2 \xrightarrow{r \to \infty} ds^2_{AdS}$$

– Amongst asymptotically AdS$_3$ spacetimes: AdS$_3$ space, BTZ black hole

• Brown and Henneaux (1986) studied asymptotic symmetries of these asymptotically AdS$_3$ spacetimes

– asymptotic symmetries = symmetries that leave asymptotic form of metric invariant
4.) Asymptotically AdS3 Spacetimes

• Brown and Henneaux (1986)
 – infinitely many asymptotic symmetries and associated charges

\[
i \{ L_n^\pm , L_m^\pm \} = (n - m) L_{n+m}^\pm + \frac{c}{12} (n^3 - n) \delta_{n+m,0} \quad \text{with } c = \frac{3 l}{2 G}
\]

\[
i \{ L_n^+, L_m^- \} = 0
\]

\[
M = \frac{L_0^+ + L_0^-}{l} \quad J = L_0^+ - L_0^-
\]

– symmetries of a two-dimensional conformal field theory (CFT\(_2\))
– precursor of the AdS\(_3\) / CFT\(_2\) correspondence

Raphaela Wutte, TU Wien, raphaela.wutte@tuwien.ac.at
4.) AdS$_3$ / CFT$_2$ Correspondence

- AdS$_3$ / CFT$_2$ Correspondence: quantum gravity on asymptotically AdS$_3$ spacetimes is dual to a two-dimensional conformal field theory

- General conjecture= Holographic Principle:

 Quantum gravity in (d+1)-dimensions \leftrightarrow d-dimensional non-gravitational quantum field theory

Raphaela Wutte, TU Wien, raphaela.wutte@tuwien.ac.at
5.) Entropy of BTZ Black Hole

• Use symmetries to derive entropy in 2d conformal field theory (Cardy 1986)

\[[L^\pm_n, L^\pm_m] = (n - m) L^\pm_{n+m} + \frac{c}{12} (n^3 - n) \delta_{n+m,0} \quad \text{with} \quad c = \frac{3 l}{2 G} \]

\[[L^+_n, L^-_m] = 0 \]

\[S_{CFT} = 2 \pi \sqrt{\frac{c}{6}} \Delta^+ + 2 \pi \sqrt{\frac{c}{6}} \Delta^- \]

• \(\Delta^\pm \) ... Eigenvalues of \(L^\pm_0 \)

• Cardy formula counts states in a 2d conformal field theory
5.) Entropy of BTZ Black Hole

- Strominger (1997): entropy of BTZ black hole matches Cardy formula

\[S_{BTZ} = \frac{2 \pi r_+}{4 G} = 2 \pi \sqrt{\frac{c}{6}} \Delta^+ + 2 \pi \sqrt{\frac{c}{6}} \Delta^- = S_{CFT} \]

\[M = \frac{\Delta^+ + \Delta^-}{l} \quad J = \Delta^+ - \Delta^- \]

- Entropy of BTZ black hole can be reproduced from counting in CFT\(_2\)
6.) Current Research

• How general is holography?
• Can we move away from AdS spacetimes
• JHEP11 (2020) with S. Detournay, W. Merbis, G. S. Ng
 • considered particular solutions to topologically massive gravity with positive cosmological constant in 3d
 • Reproduced their entropy through Cardy-like counting
• Ongoing work with Daniel Grumiller in 4d
 • Goal: reproduce entropy of cylindrical Kerr-AdS black holes through Cardy-like counting

Raphaela Wutte, TU Wien, raphaela.wutte@tuwien.ac.at
Thank you!

One more thing ...
Strings 22

- Main Organizers: Stefan Fredenhagen, Daniel Grumiller
- ~ 500 participants expected
- Takes place since 1989
- Outreach Activities: January – July 2022
- More information: www.strings22.at