

INCREASING THE IONIZATION YIELD FOR THE DETECTION OF ²³⁶U AND ²³³U BY AMS

PRESENTED BY MICHAEL KERN¹,

KARIN HAIN¹, TOMÁŠ PRÁŠEK², PETER STEIER¹, ANDREAS WIEDERIN¹ AND ROBIN GOLSER¹ ¹UNIVERSITY OF VIENNA, FACULTY OF PHYSICS, AUSTRIA ²CZECH TECHNICAL UNIVERSITY IN PRAGUE, CZECH REPUBLIC

²³⁶U and ²³³U as fingerprint

[Magill et al., EC. (7) 2006]

 $\frac{233}{236} \bigvee^{230} = 10^{-2}$ Nuclear weapons fallout $\ll 10^{-2}$ Civil nuclear industry

[Hain et al., Nat. Commun. 2020, this meeting]

²³⁸U ($t_{1/2} \approx 4.5 \times 10^9 \text{ y}$) ²³⁵U ($t_{1/2} \approx 7.0 \times 10^8 \text{ y}$)

²³⁶U ($t_{1/2} \approx 2.3 \times 10^7 \text{ y}$)

→ Mainly anthropogenic radionuclide

 236 U / 238 U = 10⁻⁶ - 10⁻¹²

[Steier et al., NIMB. 2008]

²³³U ($t_{1/2} \approx 1.5 \times 10^5 \text{ y}$)

UO⁻ for AMS

3

- $(\sim \mu g UO_x + 2 mg Fe_2O_3) \rightarrow UO^-$
- Slowly-rising UO⁻ current \rightarrow time-consuming (~4-5 h)
- Low sample throughput
- Ionization yield ~0.3% $\eta_{ion} \propto \exp(E_A)$

Ion	$E_A (eV)$
UO-	?
UO_3^-	2.125
UF_5^-	3.820

→ Strong UF₅⁻ (high E_A) current with excess fluorine (PbF₂) mixed with pure U metal [Zhao et al., NIMB. 2010].

 $(UO_x + Fe_2O_3) + PbF_2 \rightarrow UF_5^-?$

Results summary

- UF₅⁻ extraction 3 to 10-fold more efficient than UO⁻
- Mixing ratio with PbF₂ of 1:9 (wt. ratio) is optimal
- \geq 90% of extractable U within 2 h
- Direct application with sub-milligram Fe preparation
- UF₅⁻ extraction method validated with ²³⁶U/²³⁸U and
 ²³³U/²³⁸U levels of previously measured samples

Materials for UF₅⁻ extraction II. III.

I.

Dry Vienna-KkU-D30

powder (U:Fe = 1:30)

÷

1:9 PbF₂ powder

5 µg U in Vienna-KkU solution + 200 µg Fe solution

Dried + calcined (~6h)

÷

1:9 PbF₂ powder

Vienna-KkU

solution co-

precip. UF₄ with

 NdF_{3} (U:Nd = 18)

÷

1:9 PbF₂ powder

5

Materials for UF₅⁻ extraction

II.

I.

but at least 2 mg Fe using standard co-precipitation

 $m_{samp} \ge 20 mg!$

5 μg U in Vienna-KkU solution + 200 μg Fe solution

Dried + calcined (~6h)

÷

1:9 PbF₂ powder

Vienna-KkU solution coprecip. UF₄ with NdF₃ (U:Nd = 18)

III.

 ₽

 1:9 PbF₂ powder

m_{samp} ≥ 20-30 mg!

5

AMS detection efficiency of U using UF_5^-

AMS analysis using UF₅⁻

Method validation of AMS using UF₅⁻

Faculty of Physics - Isotope Physics

Results summary

- UF₅⁻ extraction 3 to -10-fold more efficient than UO⁻
- Mixing ratio with PbF₂ of 1:9 (wt. ratio) is optimal
- \geq 90% of extractable U within 2 h
- Direct application with sub-milligram Fe preparation
- UF₅⁻ extraction method validated with ²³⁶U/²³⁸U and
 ²³³U/²³⁸U levels of previously measured samples

Outlook

Application for environmental samples

 AF_m^- application for other actinides at VERA (Np, Pu, ..)

C, Ag cathode material to further cut down low-energy background in future measurements

Adjusting the UF4 + NdF3 co-precipitation to sub-milligram Nd amounts

Long-lived U trace isotopes

 $^{238}U(n_{f},3n)^{236}U(~0.5 b @ E_{n}= 13 MeV)$

 $^{2}D + ^{3}T \rightarrow ^{4}He (3.5 \text{ MeV}) + n (14.1 \text{ MeV})$

²³⁶U ($t_{1/2}$ ≈ 2.3x10⁷ y)

mainly anthropogenic radionuclide by abundance

 236 U / 238 U = 10⁻⁶ – 10⁻¹²

[Steier et al., NIMB. 2008]

Thermonuclear production, or Th-rich rocks

²³³U / ²³⁶U ≈ 10⁻²

[Karin Hain et al., Nat. Commun. 2020]

 $^{233}U/^{238}U$ AMS analysis using UF₅⁻

Global fallout ratio: [Karin Hain et al., Nat. Commun. 2020, this meeting]

Ionization of negative ions

[Ishikawa et al., Rev. Sci. Instrum. 65(1732). 1994]

universität

vien

Materials for UF₅⁻ extraction

Vienna-KkU-D30

$$\eta_{\mathrm{UF}_5^-} = (2.49 \pm 0.12)\%$$

(background corrected)

Optimal sample size for ionization efficiency ca. 200 µg Vienna-KkU-D30

 \rightarrow difficult to handle environmental samples

$$\operatorname{normal}(x,\mu,\sigma) = \frac{1}{(\sigma\sqrt{2\pi})} \cdot \exp\frac{-(x-\mu)^2}{(2\sigma^2)}$$
(6.1)

$$f(x) = a_0 \cdot \operatorname{normal}(x, x_0, \sigma_0) + a_r \cdot \operatorname{normal}(x, x_l, \sigma_l) + 0.158 \cdot a_{cu} \operatorname{normal}(x, x_{r1}, \sigma_r) + 0.353 \cdot a_{cu} \operatorname{normal}(x, x_{r2}, \sigma_r) + 0.315 \cdot a_{cu} \operatorname{normal}(x, x_{r3}, \sigma_r)$$

$$(6.2)$$

Investigated sample sizes

S: 0.5 mg M: 1.5 mg L: 4.5 mg

Same relative U concentration!