Sp(4) gauge theory on the Lattice

NAWI Graz FUIF Natural Sciences Der Wissensc

Der Wissenschaftsfonds.

Fabian Zierler, Axel Maas

ÖPG and SPS Joint Annual Meeting Innsbruck, September 2nd 2021

Nature of Dark Matter (DM) unclear

- Only gravitational effects observed
- Hypothesis: Particle Dark Matter
 - Coupling to Standard Model (SM) extremely weak
 - Stable over tens of billions of years
- Density distribution of DM constrains theories!

Dark matter as a thermal relic

- Thermal equilibrium in early Universe
 - Dark Matter particles deplete as Universe cools
 - \circ At some $T\colon$ DM and SM decouple ("freeze out")
- Relevant depletion process constrains DM!
- Example: WIMPs
 - \circ deplete by $2 \; \text{DM} \rightarrow \text{2 SM}$
 - \circ Masses typically around $\mathcal{O}(1~{
 m TeV})$

Strongly Interacting Massive Particles (SIMPs)

- Depletion by 3 DM ightarrow 2 DM
- Requires additional mediator for SM-equilibrium
- Masses typically around $\mathcal{O}(100~{
 m MeV})$
- Need a mechanism that can provide 3 DM ightarrow 2 DM

[1402.5143, 1411.3727, 1512.07917]

$\mathbf{3} ightarrow \mathbf{2}$ occurs in chiral effective theories!

- Chiral symmetry breaking with \geq 5 Goldstones
- 5-point interaction \mathcal{L}_{WZW} between Goldstones Π

$$\mathcal{L}_{WZW} \propto \epsilon^{\mu
u
ho\sigma} \mathrm{Tr}[\Pi\partial_{\mu}\Pi\partial_{
u}\Pi\partial_{
ho}\Pi\partial_{\sigma}\Pi]$$

Idea: Gauge theory with \mathcal{L}_{WZW} in EFT and **Goldstones as Dark Matter candidates** (+ mediator to SM)

Sp(4) gauge theory as a SIMP model

- $N_f=2$ fundamental sufficient for WZW Term
- Massive fermions u, d, so that Π are massive
- \bullet Introduce small mass difference between Fermions \circ Allows hierarchy: One Π is lighter than the others

$$egin{aligned} \mathcal{L} &= -rac{1}{4}F_{\mu
u}F^{\mu
u} + ar{u}(i
ot\!\!D + m_u)u + ar{d}(i
ot\!\!D + m_d)d \ m_d &= m_u + \Delta m \end{aligned}$$

Global Symmetries

- Chiral symmetry breaking: $SU(4)_F o Sp(4)_F$
- 5 pseudo-Goldstone bosons
- $m_u
 eq m_d$ breaks symmetry further
- Same pattern for all symplectic groups

[hep-ph/0001171,1205.4205]

Particle content of the theory

- 5 pseudo-Goldstones Π , 10 vectors P, ...
- No baryons (for any $Sp(N)_c$ group)
- Glueballs heavier than mesons
- $m_u
 eq m_d$ lifts degeneracy
- $5\Pi
 ightarrow 4\Pi({
 m flavoured}) + 1\Pi({
 m unflavoured})$
- $10P \rightarrow 4P(ext{flavoured}) + 6P(ext{unflavoured})$
- What is the hierarchy of the mesons masses? [1712.04220, 1909.12662] [Kulkarni et. al. (in preparation)]

Summary

- Mesonic spectrum of Sp(4) with $N_f=1+1$
- Strong isospin-splitting in non-SU(N) theory
 - 5 Pseudo-Goldstones are **not** degenerate
 - Lightest state: Unflavoured Pseudo-Goldstone
 - \circ Large Δm : Unflavoured Vectors relevant

Outlook

- On the lattice:
 - Additional channels (axialvectors, tensors, ...)
 - More low energy constants (chiral condensate,...)
 - \circ scattering processes: 2
 ightarrow 2 and 3
 ightarrow 2

Coupling to the SM, consequences for **cosmology**, **astrophysics, direct detection** and **collider searches** within the FWF funded **research group FG1**

References (1/2)

- [hep-ph/0001171] Kogut, Stephanov, Toublan,
 Verbaarschot, Zhitnitsky. Nucl. Phys. B 582, 2000
- [0805.2058]Del Debbio, Patella, Pica. Phys.Rev.D 81, 2010
- [1205.4205] von Smekal. Nucl.Phys.B Proceedings Supplements 228, 2012
- [1402.5143] Hochberg, Kuflik, Volansky, Wacker.
 Phys.Rev.Lett. 113, 2014

References (2/2)

- [1411.3727] Hochberg, Kuflik, Murayama, Volansky, Wacker. Phys.Rev.Lett. 115, 2015
- [1512.07917] Hochberg, Kuflik, Murayama. JHEP05, 2016
- [1712.04220] Bennett, Hong, Lee, Lin, Lucini, Piai, Vadacchino. JHEP03, 2018
- [1909.12662] Bennett, Hong, Lee, Lin, Lucini, Piai, Rantaharju, Vadacchino. JHEP12, 2019
- [Kulkarni et. al.] Kulkarni, Maas, Mee, Nikolic, Pradler, Zierler (in preparation)

Back-up Slides

Sp(4) Nf=2 : Π and P decay constants

SU(3) vs. Sp(4)

- ullet in case of $N_f=2$
- Sp(N) always larger
- general property of pseudo-real and complex fermion representation

$$\begin{bmatrix} U(2) \times U(2) & U(4) \\ \downarrow \text{ Anomaly} & \downarrow \text{ Anomaly} \\ SU(2)_L \times SU(2)_R \times U(1)_B & SU(4) \\ \downarrow D\chi SB \\ m_u = m_d \neq 0 & \downarrow D\chi SB \\ m_u = m_d \neq 0 & \downarrow D\chi SB \\ SU(2)_V \times U(1)_B & Jp(4) \\ \downarrow m_u \neq m_d & \downarrow m_u \neq m_d \\ U(1) \times U(1) \times U(1)_B & SU(2) \times SU(2) \\ \end{bmatrix}$$