

The q^2 moments in inclusive $b \rightarrow c$ decays at Belle II Joint Annual Meeting of ÖPG and SPS, Innsbruck 2021 Session: FAKT – TASK

Manca Mrvar

Institute of High Energy Physics (HEPHY, Vienna)

manca.mrvar@oeaw.ac.at

1st September 2021

2 Theoretical background

3 Analysis

4 Branching ratio

6 Results & Outlook

The q^2 moments in inclusive $b \rightarrow c$ decays at Belle II

- It governs the rate of the dominant weak quark transition b
 ightarrow c
- 3.3 σ tension between exclusive and inclusive determinations of $|V_{cb}|$

- Theoretical motivation: The current status $|V_{cb}|$
 - It governs the rate of the dominant weak quark transition b
 ightarrow c
 - 3.3 σ tension between exclusive and inclusive determinations of $|V_{cb}|$

- It governs the rate of the dominant weak quark transition b
 ightarrow c
- 3.3 σ tension between exclusive and inclusive determinations of $|V_{cb}|$

The a^2 moments in inclusive $b \rightarrow c$ decays at Belle II

1st September 2021

Possible reasons for anomaly:

- An experimental issue with the exclusive or the inclusive measurement?
- A problem in the theory input?
- Physics beyond the Standard Model?

• It governs the rate of the dominant weak quark transition $b \rightarrow c$ • 3.3 σ tension between exclusive and inclusive determinations of $|V_{cb}|$

SEMILEPTONIC WIDTH

$$\Gamma = \frac{G_F^2 m_b^5}{192\pi^2} |V_{cb}|^2 \left(1 + \frac{c_5(\mu) \langle O_5 \rangle(\mu)}{m_b^2} + \frac{c_6(\mu) \langle O_6 \rangle(\mu)}{m_b^3} + \mathcal{O}\left(\frac{1}{m_b^4}\right) \right)$$
(1)

Based on the Operator Product Expansion (OPE) $\langle O_i \rangle$: hadronic matrix elements (non-perturbative) c_i : coefficients (perturbative)

SEMILEPTONIC WIDTH

$$\Gamma = \frac{G_F^2 m_b^5}{192\pi^2} |\mathbf{V}_{cb}|^2 \left(1 + \frac{c_5(\mu) \langle O_5 \rangle(\mu)}{m_b^2} + \frac{c_6(\mu) \langle O_6 \rangle(\mu)}{m_b^3} + \mathcal{O}\left(\frac{1}{m_b^4}\right) \right) \tag{1}$$

Based on the Operator Product Expansion (OPE) $\langle O_i \rangle$: hadronic matrix elements (non-perturbative) c_i : coefficients (perturbative)

OTHER OBSERVABLES can be expanded with the same heavy quark parameters

 \rightarrow Moments of lepton energy spectrum

$$R_n(E_{\text{cut},\mu}) = \int_{E_{\text{cut}}} (E_\ell - \mu)^n \frac{\mathrm{d}\Gamma}{\mathrm{d}E_\ell} \mathrm{d}E_\ell , \quad \langle E_\ell^n \rangle_{E_{\text{cut}}} = \frac{R_n(E_{\text{cut}},0)}{R_0(E_{\text{cut}},0)}$$
(2)

 \rightarrow Moments of hadron mass spectrum

$$\langle m_X^{2n} \rangle_{E_{\text{cut}}} = \frac{\int_{E_{\text{cut}}} (m_X^2)^n \frac{d\Gamma}{dm_X^2} dm_X^2}{\int_{E_{\text{cut}}} \frac{d\Gamma}{dm_X^2} dm_X^2}$$
(3)

- Number of heavy quark parameters proliferates: 13 matrix elements up to $\mathcal{O}(1/m_b^4)$
- Reparametrization invariance links operators in the Heavy-Quark expansion, reducing the number of independent operators to eight for the total rate at $\mathcal{O}(1/m_b^4)$
- This reduction does not hold for E_ℓ and M_X^2 moments...

References:

T. Mannel, S. Turczyk and N. Uraltsev, "Higher Order Power Corrections in Inclusive B Decays", JHEP 11 (2010), 109 doi:10.1007/JHEP11(2010)109 [arXiv:1009.4622 [hep-ph]]

M. Fael, T. Mannel and K. Keri Vos, "|Vcb| determination from inclusive $b \rightarrow c$ decays: an alternative method", JHEP 02, 177 (2019) doi:10.1007/JHEP02(2019)177 [arXiv:1812.07472 [hep-ph]].

- Number of heavy quark parameters proliferates: 13 matrix elements up to $\mathcal{O}(1/m_b^4)$
- Reparametrization invariance links operators in the Heavy-Quark expansion, reducing the number of independent operators to eight for the total rate at $\mathcal{O}(1/m_b^4)$
- This reduction does not hold for E_ℓ and M_X^2 moments...

...but: Reduction holds for moments of lepton invariant mass q^2 $(q = p_\ell + p_
u)$

ightarrow Final goal: To measure q^2 moments for determination of $|V_{cb}|$ up to $1/m_b^4$

References:

T. Mannel, S. Turczyk and N. Uraltsev, "Higher Order Power Corrections in Inclusive B Decays", JHEP 11 (2010), 109 doi:10.1007/JHEP11(2010)109 [arXiv:1009.4622 [hep-ph]]

M. Fael, T. Mannel and K. Keri Vos, "|Vcb| determination from inclusive $b \rightarrow c$ decays: an alternative method", JHEP 02, 177 (2019) doi:10.1007/JHEP02(2019)177 [arXiv:1812.07472 [hep-ph]].

Inclusive $B \to X_c \ell \bar{\nu_\ell}, \ \ell = e, \mu$.

Untagged approach: the only known particle is ℓ .

Inclusive $B \to X_c \ell \bar{\nu_\ell}, \ \ell = e, \mu$.

Untagged approach: the only known particle is ℓ .

$$q^2 = M_{\ell\nu}^2 = 2(E_\ell E_\nu - \vec{p_\ell} \cdot \vec{p_\nu})$$

Inclusive $B \to X_c \ell \bar{\nu_\ell}, \ \ell = e, \mu$.

Untagged approach: the only known particle is ℓ .

$$q^2 = M_{\ell\nu}^2 = 2(E_\ell E_\nu - \vec{p_\ell} \cdot \vec{p_\nu})$$

NEUTRINO MOMENTUM: $p_{\nu} = (|p_{\text{miss}}|, \vec{p}_{\text{miss}})$

Challenge: excluding events where other particles have (most likely) been lost:

- $\times\,$ Missing momentum outside of the detector acceptance
- \times Large charge imbalance
- $\checkmark M_{\rm miss}^2$ close to zero

Inclusive $B \to X_c \ell \bar{\nu_\ell}, \ \ell = e, \mu$.

Untagged approach: the only known particle is ℓ .

$$q^2=M_{\ell
u}^2=2(E_\ell E_
u-ec{p_\ell}\cdotec{p_
u})$$

NEUTRINO MOMENTUM: $p_{\nu} = (|p_{\text{miss}}|, \vec{p}_{\text{miss}})$

Challenge: excluding events where other particles have (most likely) been lost:

- $\times\,$ Missing momentum outside of the detector acceptance
- $\times~$ Large charge imbalance
- $\checkmark M_{\rm miss}^2$ close to zero

Data samples

- Belle II data collected in the years 2019 and 2020 equivalent to 62.8 fb⁻¹
- Background and signal model:
 - \diamond Continuum events $(e^+e^-
 ightarrow q ar q)$: replaced by off-resonance data of 9.2 fb $^{-1}$
 - \diamond Signal and $B\bar{B}$ backgrounds: Monte Carlo sample of 200 fb⁻¹

- Samples are fitted by ROOT's TFractionFitter (binned likelihood fit)
- + Fitting range is between $0.4\,GeV/c$ and $2.5\,GeV/c$
- Three templates (shapes) are used for fitting:
 - $\diamond\,$ Signal (MC): events that include $\ell,\,\nu_\ell$ and c-quark containing meson
 - ◊ Continuum: shape of off-resonance data
 - $\diamond~Bar{B}$ backgrounds (MC): b
 ightarrow u, secondary leptons, fake leptons, other lepton candidates

Electron mode: pre- and postfit results

Yields	Pre-fit	Post-fit
Signal	1849844 ± 762	1925908 ± 5834
$Bar{B}$ background	3117962 ± 989	2641059 ± 18459
Continuum	5546871 ± 6149	5511039 ± 22370

Muon mode: pre- and postfit results

Yields	Pre-fit	Post-fit
Signal	1436116 ± 671	1501462 ± 7277
$B\bar{B}$ background	3774497 ± 1089	4102903 ± 87668
Continuum	8033487 ± 7400	7353691 ± 89823

(4)

Two sources $(B^+ \to X_c \ell \nu_\ell$ and $B^0 \to X_c \ell \nu_\ell)$ with the same semileptonic width Γ :

$$\Gamma(B \to X_c \ell \nu_\ell) = \frac{N_{\rm sig}^\ell}{2N_{B\bar{B}} \left(f_+ \epsilon_{B^+} \tau_{B^+} + f_0 \epsilon_{B^0} \tau_{B^0}\right)}$$

$$\begin{split} & N_{\rm sig}^\ell \hdown \mbox{ number of signal events} \\ & N_{B\bar{B}} \hdown \mbox{ the number of } B\bar{B} \mbox{ pairs in the data sample} \\ & \epsilon_{B^+/B^0} \hdown \mbox{ the total signal selection efficiency} \\ & {\rm factor } 2 \hdown \mbox{ both } B \mbox{ mesons in the } \Upsilon(4S) \mbox{ event can contribute to the signal} \\ & \tau_{B^+/B^0} \hdown \mbox{ the mean life time of the } B \mbox{ mesons sons } \\ & f_{+/0} \hdown \mbox{ the proportions of } \Upsilon(4S) \mbox{ decaying into } B^+B^+ \mbox{ and } B^0\bar{B^0} \mbox{ pairs} \end{split}$$

Two sources $(B^+ \to X_c \ell \nu_\ell$ and $B^0 \to X_c \ell \nu_\ell)$ with the same semileptonic width Γ :

$$\Gamma(B \to X_c \ell \nu_\ell) = \frac{N_{\rm sig}^\ell}{2N_{B\bar{B}} \left(f_+ \epsilon_{B^+} \tau_{B^+} + f_0 \epsilon_{B^0} \tau_{B^0}\right)} \tag{4}$$

 $\begin{array}{c} N_{sig}^{\ell} \ ... \ number \ of \ signal \ events \\ N_{B\bar{B}} \ ... \ the \ number \ of \ B\bar{B} \ pairs \ in \ the \ data \ sample \\ e_{B^+/B^0} \ ... \ the \ total \ signal \ selection \ efficiency \\ factor \ 2 \ ... \ both \ B \ mesons \ in \ the \ \Upsilon(4S) \ event \ can \ contribute \ to \ the \ signal \\ \tau_{B^+/B^0} \ ... \ the \ mean \ life \ time \ of \ the \ B-mesons \\ f_{+/0} \ ... \ the \ proportions \ of \ \Upsilon(4S) \ decaying \ into \ B^+B^+ \ and \ B^0\bar{B^0} \ pairs \\ \end{array} \right) \ \begin{array}{c} \label{eq:prop} \mathsf{PDG} \\ \end{array}$

Two sources $(B^+ \to X_c \ell \nu_\ell$ and $B^0 \to X_c \ell \nu_\ell)$ with the same semileptonic width Γ :

$$\Gamma(B \to X_c \ell \nu_\ell) = \frac{N_{\rm sig}^\ell}{2N_{B\bar{B}} \left(f_+ \epsilon_{B^+} \tau_{B^+} + f_0 \epsilon_{B^0} \tau_{B^0}\right)} \tag{4}$$

 $\begin{array}{c} N_{sig}^{\ell} \ ... \ number \ of \ signal \ events \\ N_{B\bar{B}} \ ... \ the \ number \ of \ B\bar{B} \ pairs \ in \ the \ data \ sample \\ e_{B^+/B^0} \ ... \ the \ total \ signal \ selection \ efficiency \\ factor \ 2 \ ... \ both \ B \ mesons \ in \ the \ \Upsilon(4S) \ event \ can \ contribute \ to \ the \ signal \\ \tau_{B^+/B^0} \ ... \ the \ mean \ life \ time \ of \ the \ B-mesons \\ f_{+/0} \ ... \ the \ proportions \ of \ \Upsilon(4S) \ decaying \ into \ B^+B^+ \ and \ B^0\bar{B^0} \ pairs \\ \end{array} \right) \ \begin{array}{c} \label{eq:prop} \mathsf{PDG} \\ \end{array}$

(Average) branching fraction, calculated using (average) lifetime τ :

$$\mathcal{B}(B \to X_c \ell \nu_\ell) = \Gamma(B \to X_c \ell \nu_\ell) \tau \tag{5}$$

Two sources $(B^+ \to X_c \ell \nu_\ell$ and $B^0 \to X_c \ell \nu_\ell)$ with the same semileptonic width Γ :

$$\Gamma(B \to X_c \ell \nu_\ell) = \frac{N_{\rm sig}^\ell}{2N_{B\bar{B}} \left(f_+ \epsilon_{B^+} \tau_{B^+} + f_0 \epsilon_{B^0} \tau_{B^0}\right)} \tag{4}$$

 $\begin{array}{c} N_{sig}^{\ell} & \dots \text{ number of signal events} \\ N_{B\bar{B}} & \dots \text{ the number of } B\bar{B} \text{ pairs in the data sample} \end{array} \right\} \text{ data} \\ \epsilon_{B^+/B^0} & \dots \text{ the total signal selection efficiency } MC \\ \text{factor } 2 & \dots \text{ both } B \text{ mesons in the } \Upsilon(4S) \text{ event can contribute to the signal} \\ \tau_{B^+/B^0} & \dots \text{ the mean life time of the } B \text{-mesons} \\ f_{+/0} & \dots \text{ the proportions of } \Upsilon(4S) \text{ decaying into } B^+B^+ \text{ and } B^0\bar{B^0} \text{ pairs} \end{array} \right\} \\ \end{array} \right\} \\ \begin{array}{c} \text{PDG} \end{array}$

(Average) branching fraction, calculated using (average) lifetime τ :

$$\mathcal{B}(B \to X_c \ell \nu_\ell) = \Gamma(B \to X_c \ell \nu_\ell) \tau$$
 (5)

The branching fractions for both modes are:

$$\mathcal{B}(B \to X_c e \nu_e) = (9.97 \pm 0.03_{stat})\% \tag{6}$$

$$\mathcal{B}(B \to X_c \mu \nu_\mu) = (9.47 \pm 0.05_{stat})\%$$
 (7)

SYSTEMATIC UNCERTAINTIES

	Relative uncertainty [%]		
Contribution	Electron mode	Muon mode	
Tracking	0.69	0.69	
N _{BB}	1.1	1.1	
Lepton ID corrections	1.64	2.33	
f_0/f_+ , B lifetime	1.2	1.2	
$B \rightarrow X_c \ell \nu_\ell$ branching fractions	2.65	2.15	
$B \rightarrow X_c \ell \nu_\ell$ form factors	1.11	1.11	
$B\overline{B}$ background model	0.24	0.34	
Off-resonance data model	0.34	2.91	
Sum	3.77	4.79	

SYSTEMATIC UNCERTAINTIES

	Relative uncertainty [%]		
Contribution	Electron mode	Muon mode	
Tracking	0.69	0.69	
N _{BB}	1.1	1.1	
Lepton ID corrections	1.64	2.33	
f_0/f_+ , B lifetime	1.2	1.2	
$B \rightarrow X_c \ell \nu_\ell$ branching fractions	2.65	2.15	
$B \rightarrow X_c \ell \nu_\ell$ form factors	1.11	1.11	
$B\overline{B}$ background model	0.24	0.34	
Off-resonance data model	0.34	2.91	
Sum	3.77	4.79	

BRANCHING RATIOS

$$\mathcal{B}(B \to X_c e \nu_e) = (9.97 \pm 0.03_{stat} \pm 0.38_{sys})\%$$
 (8)

$$\mathcal{B}(B \to X_c \mu \nu_\mu) = (9.47 \pm 0.05_{stat} \pm 0.45_{sys})\%$$
 (9)

SYSTEMATIC UNCERTAINTIES

	Relative uncertainty [%]		
Contribution	Electron mode	Muon mode	
Tracking	0.69	0.69	
N _{BB}	1.1	1.1	
Lepton ID corrections	1.64	2.33	
f_0/f_+ , B lifetime	1.2	1.2	
$B \rightarrow X_c \ell \nu_\ell$ branching fractions	2.65	2.15	
$B \rightarrow X_c \ell \nu_\ell$ form factors	1.11	1.11	
$B\overline{B}$ background model	0.24	0.34	
Off-resonance data model	0.34	2.91	
Sum	3.77	4.79	

BRANCHING RATIOS

$$\mathcal{B}(B \to X_c e \nu_e) = (9.97 \pm 0.03_{stat} \pm 0.38_{sys})\%$$
 (8)

$$\mathcal{B}(B \to X_c \mu \nu_\mu) = (9.47 \pm 0.05_{stat} \pm 0.45_{sys})\%$$
 (9)

COMBINED BRANCHING RATIO

$$\mathcal{B}(B \to X_c \ell \nu_\ell) = (9.75 \pm 0.03_{stat} \pm 0.47_{sys})\%$$
(10)

Summary & Outlook

- Branching fraction (zeroth moment) has been determined with $B o X_c \ell ar{
 u_\ell}$
- Studies of q^2 and its moments are ongoing
- We are working towards the extraction of $|V_{cb}|$

Summary & Outlook

- Branching fraction (zeroth moment) has been determined with $B o X_c \ell ar{
 u_\ell}$
- Studies of q^2 and its moments are ongoing
- We are working towards the extraction of $|V_{cb}|$

We expect to have preliminary $|V_{cb}|$ measurement next year! :)

BACKUP

	Electron mode		Muon mode		
Contribution	Pre-fit	Post-fit	Pre-fit	Post-fit	
Signal yield	1849844 ± 1360	1932425 ± 5834	1436116 ± 1198	1501462 ± 7277	
$b \rightarrow u$ background	63005 ± 251	53368 ± 373	47562 ± 218	51700 ± 1105	
Fakes	1485693 ± 1219	1258451 ± 8796	2901541 ± 1703	3153994 ± 67393	
Secondaries	1562863 ± 1250	1323818 ± 9252	821409 ± 906	892876 ± 19078	
Other MC background	6401 ± 80	5422 ± 38	3985 ± 63	4332 ± 93	
Continuum	5546871 ± 2355	5511039 ± 22370	8033487 ± 2834	7353691 ± 89823	
Sum	10514678 ± 3243	10084523 ± 26412	13244100 ± 3639	12958055 ± 114140	

Main source: Signal and background modeling

Signal model

- Signal sample was divided into 30 decays (subsamples)
- The branching ratio of each subsample was varied between $\pm 1\sigma$

$B\bar{B}$ background model

• The amounts of $B\bar{B}$ components ($b \to c$, secondaries, fakes, others) were varied one by one within $\pm 5\%$

Off-resonance data model

• Uncertainty is determined from the difference of signal yield with fully floating continuum component and component floating only within the luminosity measurement uncertainty

$B \to X_{c} e \nu_{\ell}$	Γ _i / Γ _{tot} [%]	σ _{Γi/tot} ,-[%]	$\sigma_{\Gamma_{i/tot},+}$ [%]	N _{sig} , _	N _{sig,+}	$\sigma_{N_{sig,rel}}$ [%]
$D^-\ell^+\nu_{\ell}$	2.25	0.08	0.08	1931268	1933046	0.046
$D^*(2010) = \tilde{\ell} + \nu_{\ell}$	5.09	0.17	0.17	1936901	1927049	0.255
$\bar{D^0}\pi^-\ell^+\nu_\ell$	0.41	0.05	0.05	1931239	1933644	0.062
$D_0^*(2300)^- \ell^+ \nu_\ell, D_0^{*-} \to \bar{D^0} \pi^-$	0.30	0.12	0.12	1922936	1941579	0.482
$D_2^*(2460)^- \ell^+ \nu_\ell, D_2^{*-} \to D^0 \pi^-$	0.121	0.033	0.033	1927194	1937459	0.266
$D^{(*)}n\pi\ell^{+}\nu_{\ell}(n \ge 1)$	0.248 ¹	0.062	0.062	1927652	1936093	0.218
$D^{*0}\pi^{-}\ell^{+}\nu_{\ell}$	0.58	0.08	0.08	1930124	1933193	0.079
$D_1(2420) - \ell^+ \nu_\ell$	0.31	0.12	0.12	1933015	1931679	0.035
$D_2^*(2460)^- \ell^+ \nu_\ell, D_2^{*-} \to D^{*0} \pi^-$	0.068	0.012	0.012	1929479	1935758	0.162
$D^-\pi^+\pi^-\ell^+\nu_\ell$	5.8 ²	3.0	3.0	1931024	1933486	0.064
$D^{*-}\pi^{+}\pi^{-}\ell^{+}\nu_{\ell}$	2.8 ³	1.4	1.4	1926079	1937582	0.298
$D^0 \ell^+ \nu_\ell$	2.29	0.08	0.08	1931076	1932703	0.042
$\bar{D^{*}}(2007)^{0}\ell^{+}\nu_{\ell}$	5.58	0.26	0.26	1943118	1922732	0.527
$D^{-}\pi^{+}\ell^{+}\nu_{\ell}$	0.44	0.04	0.04	1930414	1941668	0.291
$\bar{D_0^*}(2420)^0 \ell^+ \nu_\ell, D_0^{*0} \to D^- \pi^+$	0.25	0.05	0.05	1913151	1947373	0.885
$\bar{D_2^*}(2460)^0 \ell^+ \nu_\ell, \bar{D_2^{*0}} \to D^- \pi^+$	0.153	0.016	0.016	1928964	1933883	0.127
$D^{(*)}n\pi\ell^+\nu_\ell (n \ge 1)$	0.193 ¹	0.022	0.022	1929894	1932582	0.070
$D^* - \pi^+ \ell^+ \nu_\ell$	0.60	0.04	0.04	1931840	1933072	0.032
$\bar{D_1}(2420)^0 \ell^+ \nu_\ell, \bar{D_1}^0 \to D^{*-} \pi^+$	0.303	0.020	0.020	1932406	1931181	0.032
$\bar{D}_{1}'(2430)^{0}\ell^{+}\nu_{\ell}, \bar{D}_{1}'^{0} \rightarrow D^{*-}\pi^{+}$	0.27	0.09	0.09	1931181	1938717	0.195
$\bar{D_2^*}(2460)^0 \ell^+ \nu_\ell, \bar{D_2^*}^0 \to D^{*-} \pi^+$	0.101	0.024	0.024	1926970	1937601	0.275
$\bar{D^0}\pi^+\pi^-\ell^+\nu_\ell$	7.12	2.1	2.1	1931527	1933351	0.047
$D^{*0}\pi^{+}\pi^{-}\ell^{+}\nu_{\ell}$	1.4 ³	1.1	1.1	1920958	1944040	0.597
$D_s^- \kappa^+ \ell^+ \nu_\ell$	0.003	0.002	0.002	1929035	1934350	0.138
$D_s^{*-}\kappa^+\ell^+\nu_\ell$	0.003	0.003	0.003	1931862	1933038	0.030
$D_1(H)^+ \ell^+ \nu_\ell$ (†)	1	1	1	1916144	1947723	0.817
$D^{-}\eta \ell^{+}\nu_{\ell}$ (hypothetical*)	0.201	0.201	0.201	1916398	1947962	0.817
$D^{*-}\ell^+\nu_{\ell}$ (hypothetical*)	0.201	0.201	0.201	1913463	1951018	0.972
$D^0 \eta \ell^+ \nu_\ell$ (hypothetical*)	0.201	0.201	0.201	1910202	1952695	1.099
$D^{*0}\ell^+\nu_\ell$ (hypothetical*)	0.201	0.201	0.201	1909367	1953684	1.147

¹ Values given in Γ_i/Γ_3 instead of Γ_i/Γ_{tot} † Branching fraction was varied within ±100%

² Values given in Γ_i/Γ_4 instead of Γ_i/Γ_{tot} ³ Values given in Γ_i/Γ_6 instead of Γ_i/Γ_{tot} * Decays from MC to fill the gap between the $\mathcal B$ of inclusive and sum of the exclusive decays

$B \to X_c \mu \nu_\ell$	Γ _i / Γ _{tot} [%]	σ _{Γi/tot} ,-[%]	$\sigma_{\Gamma_{i/tot},+}$ [%]	N _{sig} , _	N _{sig,+}	$\sigma_{N_{sig,rel}}$ [%]
$D^{-}\ell^{+}\nu_{\ell}$	2.25	0.08	0.08	1504186	1504672	0.016
$D^*(2010) = \tilde{\ell} + \nu_{\rho}$	5.09	0.17	0.17	1514854	1508594	0.208
$\bar{D^0}_{\pi} - \ell^+ \nu_{\ell}$	0.41	0.05	0.05	1503605	1510606	0.233
$D_0^*(2300)^- \ell^+ \nu_\ell, D_0^{*-} \to \bar{D^0} \pi^-$	0.30	0.12	0.12	1504428	1508941	0.150
$D_2^*(2460)^- \ell^+ \nu_\ell, D_2^{*-} \to \bar{D^0} \pi^-$	0.121	0.033	0.033	1500621	1507473	0.228
$D^{(*)}n\pi\ell^+\nu_\ell (n \ge 1)$	0.248 ¹	0.062	0.062	1501597	1505444	0.128
$D^{*0}\pi^{-}\ell^{+}\nu_{\ell}$	0.58	0.08	0.08	1509942	1513377	0.114
$D_1(2420) - \ell^+ \nu_\ell$	0.31	0.12	0.12	1506194	1502020	0.139
$D_2^*(2460)^- \ell^+ \nu_\ell, D_2^{*-} \to D^{-1} \pi^-$	0.068	0.012	0.012	1506016	1506480	0.015
$D^{-}\pi^{+}\pi^{-}\ell^{+}\nu_{\ell}$	5.8 ²	3.0	3.0	1502369	1504398	0.068
$D^{*-}\pi^{+}\pi^{-}\ell^{+}\nu_{\ell}$	2.8 ³	1.4	1.4	1501022	1510699	0.322
$D^0 \ell^+ \nu_\ell$	2.29	0.08	0.08	1503849	1505237	0.046
$\bar{D^{*}}(2007)^{0}\ell^{+}\nu_{\ell}$	5.58	0.26	0.26	1510872	1505381	0.183
$D^{-}\pi^{+}\ell^{+}\nu_{\ell}$	0.44	0.04	0.04	1503896	1513751	0.328
$\bar{D_0^*}(2420)^0 \ell^+ \nu_\ell, D_0^{*0} \to D^- \pi^+$	0.25	0.05	0.05	1498581	1519215	0.687
$\bar{D_2^*}(2460)^0 \ell^+ \nu_\ell, \bar{D_2^*}^0 \to D^- \pi^+$	0.153	0.016	0.016	1499692	1507424	0.257
$D^{(*)}n\pi\ell^+\nu_\ell (n \ge 1)$	0.193 ¹	0.022	0.022	1503631	1501530	0.070
$D^* - \pi^+ \ell^+ \nu_\ell$	0.60	0.04	0.04	1502226	1505597	0.112
$\bar{D_1}(2420)^0 \ell^+ \nu_\ell, \bar{D_1}^0 \to D^{*-} \pi^+$	0.303	0.020	0.020	1512654	1504807	0.261
$\bar{D}_{1}'(2430)^{0}\ell^{+}\nu_{\ell}, \bar{D}_{1}'^{0} \rightarrow D^{*-}\pi^{+}$	0.27	0.09	0.09	1497896	1508952	0.368
$\bar{D_2^*}(2460)^0 \ell^+ \nu_\ell, \bar{D_2^*}^0 \to D^{*-} \pi^+$	0.101	0.024	0.024	1500761	1513068	0.410
$\bar{D^0}\pi^+\pi^-\ell^+\nu_\ell$	7.12	2.1	2.1	1500541	1506281	0.191
$D^{*0}\pi^{+}\pi^{-}\ell^{+}\nu_{\ell}$	1.4 ³	1.1	1.1	1500421	1510675	0.341
$D_s^- \kappa^+ \ell^+ \nu_\ell$	0.003	0.002	0.002	1502864	1507095	0.141
$D_s^{*-}\kappa^+\ell^+\nu_\ell$	0.003	0.003	0.003	1500971	1506384	0.180
$D_1(H)^+ \ell^+ \nu_{\ell}(\dagger)$	1	1	1	1503126	1513857	0.357
$D^{-}\eta \ell^{+}\nu_{\ell}$ (hypothetical*)	0.201	0.201	0.201	1499323	1516808	0.582
$D^{*-}\ell^+\nu_{\ell}$ (hypothetical*)	0.201	0.201	0.201	1490428	1516353	0.863
$D^0 \eta \ell^+ \nu_\ell$ (hypothetical*)	0.201	0.201	0.201	1496843	1525394	0.951
$D^{*0}\ell^+\nu_\ell$ (hypothetical*)	0.201	0.201	0.201	1493486	1521830	0.944

¹ Values given in Γ_i/Γ_3 instead of Γ_i/Γ_{tot} † Branching fraction was varied within ±100%

² Values given in Γ_i/Γ_4 instead of Γ_i/Γ_{tot} ³ Values given in Γ_i/Γ_6 instead of Γ_i/Γ_{tot} * Decays from MC to fill the gap between the $\mathcal B$ of inclusive and sum of the exclusive decays

To crosscheck the stability of the fit, we repeated the fit over a different fitting range, excluding up to the first 7 bins, which corresponds to almost 1 GeV.

Fitting region (bins)	Signal yield	$\epsilon^{e}(B^{+})$	$\epsilon^{e}(B^{0})$	$\Delta \mathcal{B}_e$ [%]
[2, 25]	1902589 ± 6407	0.155	0.122	0.01
[3, 25]	1863009 ± 6547	0.152	0.119	0.22
[4, 25]	1802833 ± 6827	0.148	0.116	-0.43
[5, 25]	1737155 ± 7538	0.143	0.109	0.40
[6, 25]	1673829 ± 7013	0.132	0.104	3.32
[7, 25]	1603001 ± 6624	0.125	0.099	4.32

ELECTRON MODE

MUON MODE

Fitting region (bins)	Signal yield	$\epsilon^{e}(B^{+})$	$\epsilon^{e}(B^{0})$	$\Delta \mathcal{B}_e$ [%]
[2, 25]	1473534 ± 4390	0.129	0.099	-0.97
[3, 25]	1445794 ± 4595	0.127	0.098	-1.66
[4, 25]	1428318 ± 4398	0.125	0.097	-1.41
[5, 25]	1400845 ± 4833	0.123	0.095	-1.34
[6, 25]	1365623 ± 5510	0.120	0.092	-1.25
[7, 25]	1322365 ± 4843	0.111	0.086	3.00

To exclude events, where the missing momentum is likely to misrepresent the neutrino momentum, we imposed the event-level selections to the following properties: missing mass, polar angle of momentum and absolute value of event charge.

ELECTRON MODE

Selection cuts	Signal yield	$\epsilon^{e}(B^{+})$	$\epsilon^{e}(B^{0})$	$\Delta \mathcal{B}_e$ [%]
$M_{miss}^2 < 2 \text{ GeV/c}^2$	1447215 ± 5746	0.122	0.094	-2.74
$\left \sum_{i} q_{i}\right < 2$	1595620 ± 5787	0.129	0.098	2.03
$ heta_{\textit{miss}} \in [0.6, 2.6]$	1712006 ± 5824	0.139	0.109	0.83

MUON MODE

Selection cuts	Signal yield	$\epsilon^{\mu}(B^+)$	$\epsilon^{\mu}(B^0)$	$\Delta \mathcal{B}_{\mu}$ [%]
$M_{miss}^2 < 2 \text{ GeV/c}^2$	1121154 ± 3631	0.100	0.076	-2.19
$\left \sum_{i} q_{i}\right < 2$	1232379 ± 3621	0.106	0.100	1.44
$ heta_{\textit{miss}} \in [0.6, 2.6]$	1315029 ± 3757	0.114	0.088	0.11

Neutrino properties

Manca Mrvar (HEPHY)