Measurement of the CKM matrix element \(|V_{cb}| \) via \(B^- \rightarrow D^0 \ell^- \bar{\nu}_\ell \) at Belle II

Philipp Horak

HEPHY
Österreichische Akademie der Wissenschaft

OEPG Jahrestagung 2021

September 1, 2021
Overview

- Theoretical background
- Belle II experiment
- Current analysis status
- Outlook
Standard model

- Weak coupling strength differs between quark flavors
- Unitary CKM matrix
- $|V_{cb}| \approx 0.04$ with 2% uncertainty
- Measure $|V_{cb}|$ using semileptonic decays
$|V_{xb}|$ with semileptonic decays

Inclusive
- Reconstruction of the generic decay $B \rightarrow X_{u/c} \ell \nu_{\ell}$ (*Manca Mrvar*)
- Calculation of $|V_{xb}|$ with Heavy Quark Expansion
- Series expansion in terms of m_b and α_s

Exclusive
- Reconstruction of a specific decay, e.g. $|V_{ub}|$: $B \rightarrow \pi \ell \nu_{\ell}$
- $|V_{cb}|$: $B \rightarrow D^* \ell \nu_{\ell}$ (*Daniel Dorner*) or $B \rightarrow D \ell \nu_{\ell}$
- Calculation of $|V_{xb}|$ using Lattice QCD results

Graphical Representation:
- Plot showing the values of $|V_{ub}|$ and $|V_{cb}|$ with χ^2 contours.
- The HFLAV Average is indicated in the plot.

Philipp Horak (HEPHY)
$|V_{cb}|$ exclusive

- Differential decay rates:
 \[
 \frac{d\Gamma}{dw}(B \to D\ell\nu_\ell) = \frac{G_F^2}{48\pi^3}(m_B + m_D)^2 m_D^3 \eta_{EW} |V_{cb}|^2 (w^2 - 1)^{3/2} G(w)^2
 \]

 - with the form factor $G(w)$
 - with the kinematic variable $w = v_B \cdot v_D = \frac{p_B \cdot p_D}{m_B m_D}$
 - $w_{\text{min}} = 1$: zero-recoil point, D at rest in B rest frame
 - Form factor at zero-recoil point from lattice QCD
 $G(w = 1) = 1.074 \pm 0.018 \pm 0.016$
$D\ell\nu_\ell$ vs $D^*\ell\nu_\ell$

<table>
<thead>
<tr>
<th>Theory</th>
<th>$D\ell\nu_\ell$</th>
<th>$[D^* \rightarrow D\pi]\ell\nu_\ell$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Theory</td>
<td>Scalar meson</td>
<td>Vector meson</td>
</tr>
<tr>
<td></td>
<td>1^\dagger form factor free parameter ρ^2</td>
<td>3^\dagger form factor parameters ρ^2, $R_1(1)$, $R_2(2)$</td>
</tr>
<tr>
<td></td>
<td>1 kinematic variable w</td>
<td>4 kinematic variables w, θ_ℓ, θ_V, χ</td>
</tr>
<tr>
<td>Experiment</td>
<td>Large downfeed from $D^*\ell\nu$</td>
<td>Clean sample by cutting on $m_D^* - m_D$</td>
</tr>
<tr>
<td></td>
<td>Smaller branching fraction</td>
<td>Pion from D^* decay restricted to low p</td>
</tr>
<tr>
<td></td>
<td>No slow pion</td>
<td>Large systematic error from slow pion</td>
</tr>
</tbody>
</table>

† for small lepton masses
The Belle II experiment

- Electron - positron collider in Tsukuba, Japan, in operation since 2018
- Collisions at $\sqrt{s} = 10.58$ GeV produce large amounts of B mesons
- 7 sub detectors measure momenta, energies and identify particles resulting from B decays

Total data sample: 50 ab$^{-1}$ until 2030s, currently 213 fb$^{-1}$ recorded
Analysis overview

Analysis strategy

- Reconstruction of $B^- \to D^0 \ell^- \bar{\nu}_\ell$ and $D^0 \to K^- \pi^+$ with $\ell = (e, \mu)$
- *Untagged*, i.e., no requirements for second B meson

Current status:

- First results with 62.8 fb$^{-1}$
- Reconstruction and measurement of the branching ratio
- Measurement of lepton universality $R(e/\mu)$

Detector data \rightarrow Decay reconstruction \rightarrow Signal extraction (Likelihood Fit) \rightarrow Branching ratio
Decay reconstruction

- Cuts on variables include $m_{K\pi}$, particle identification, event shape to maximize statistical significance
- Suppression of $D^* \ell \nu_\ell$ downfeed by applying vetos:
 - If slow pion can be found that cleanly reconstructs D^*, discard candidate
- Selection optimized on simulated Monte-Carlo (MC) data
Decay reconstruction

- θ_{BY}: Angle between nominal B meson and combined $D^0 \ell^-$ system (Y)

$$\cos \theta_{BY} = \frac{2 E_B^* E_Y^* - m_B^2 - m_Y^2}{2|p_B^*||p_Y^*|}$$

- $\cos \theta_{BY}$ only restricted between -1 and 1 for signal events

Pre-fit
Fit

- N_{sig} in the sample via binned Maximum Likelihood Fit
- Shapes of distributions from MC rescaled to match real data
- 4 components: Signal, $D^*\ell\nu$, other $B\bar{B}$ background and continuum ($e^+e^- \rightarrow q\bar{q}, q \in [u, d, s, c]$)

Post-fit

![Plot showing the fit results for $B^- \rightarrow D^0 e^- \bar{\nu}_e$]
Branching ratio

\[\text{Br} \left(B^- \to D^0 \ell^- \bar{\nu}_\ell \right) = \frac{N_{\text{sig}}}{\epsilon N_{B^\pm} \text{Br} \left(D^0 \to K^- \pi^+ \right)} \]

- with amount of signal events \(N_{\text{sig}} \), \(\epsilon = \frac{n_{\text{reco,MC}}}{n_{\text{true,MC}}} \) and number of \(B^\pm \) mesons in the data sample \(N_{B^\pm} \)
- Statistical error from fit
- Systematic errors evaluated individually and added in quadrature

<table>
<thead>
<tr>
<th>(D \ell \nu_\ell)</th>
<th>Branching ratio [%]</th>
<th>Relative stat. error</th>
</tr>
</thead>
<tbody>
<tr>
<td>(D \ell \nu_\ell) (World average)</td>
<td>2.29 ± 0.05\text{stat} ± 0.08\text{syst}</td>
<td>2.3%</td>
</tr>
</tbody>
</table>

\[R(e/\mu) = \frac{\text{Br} \left(B^- \to D^0 e^- \bar{\nu}_e \right)}{\text{Br} \left(B^- \to D^0 \mu^- \bar{\nu}_\mu \right)} \]

\[R(e/\mu) = 1.04 \pm 0.05\text{stat} \pm 0.03\text{syst} \]
Reconstruction of $B^- \rightarrow D^0 \ell^- \bar{\nu}_\ell$ and $D^0 \rightarrow K^- \pi^+ \ell$ with $\ell = (e, \mu)$

- 62.8 fb$^{-1}$ Belle II data
- Branching ratio in agreement with world average
- $R(e/\mu)$ in agreement with lepton universality

Next steps

- Reconstruction of kinematic variable w
- Differential decay rate
- Extrapolation to $w = 1$ for $|V_{cb}|$ measurement
- ≈ 500 fb$^{-1}$ until shutdown in 2022
Backup
V_{xb} with B mesons

Hadronic decays

- Large branching fractions
- Easy to reconstruct
- Dependent on hadronic currents
- Difficult to compute

Leptonic decays

- No hadronic contributions
- Theoretically clean
- Very low branching ratios ($\approx 10^{-7}\%$)
- $B \rightarrow \mu \nu$ measured with 3σ at Belle

Semileptonic decays

- Large branching ratios ($B^{-} \rightarrow D^{0} \ell^{-}\bar{\nu_{\ell}} \approx 2.3\%$)
- Theory side computable
- Compromise between theory and experiment
Selection criteria

<table>
<thead>
<tr>
<th>Variable</th>
<th>Cuts</th>
</tr>
</thead>
</table>
| Tracking & event level | \(|d_0| < 0.5 \text{ cm}\)
| | \(|z_0| < 2 \text{ cm}\) |
| | thetainCDCAcceptance |
| | nCDCHits > 0 |
| | nTracks > 3 |
| | \(R_2 < 0.3\) |
| | \(E_{\text{vis}} > 4 \text{ GeV}\) |
| Lepton | \(p^* > 0.6 \text{ GeV}\) |
| | e/\(\mu\) \(\text{ID} > 0.9\) |
| \(D^0\) | \(M \in [1.857 \text{ GeV}, 1.872 \text{ GeV}]\) |
| \(Y(\text{combined } D^0 - \ell)\) | \(M > 3.15 \text{ GeV}\) |

Brems correction

- **correctBremsBelle module**
- Angle < 0.05
 0.05 GeV < \(E\) < 0.15 GeV
To suppress D^* downfeed, implement 2 vetos:

- $B^0 \rightarrow [D^{*+} \rightarrow D^0 \pi^+] \ell^- \nu_\ell$
 - Slow π: $p < 0.35$ GeV
 - 144 MeV $< m_{D^*} - m_D < 148$ MeV

- $B^+ \rightarrow [D^{*0} \rightarrow D^0 [\pi^0 \rightarrow \gamma \gamma]] \ell^+ \nu_\ell$
 - $\pi^0 \rightarrow \gamma \gamma$ selection criteria from recommendations
 - 141 MeV $< m_{D^*} - m_D < 145$ MeV
 - Opening angle of $D^0 \pi^0 < 17^\circ$

eff40 lists are chosen
MC corrections

- Lepton ID corrections
 - Apply a weight to each B candidate based on lepton p and θ
 - Recommended tables from the Lepton ID group for the Moriond 2021 dataset
 - Efficiency, $\ell - \pi$ fake rate, $\ell - K$ fake rate
 - To assign weights PIDvar module by Will Sutcliffe

- Momentum correction
 - To account for B field map, apply global scale factor
 - Recommended scale factor: 1.00056 to data
Angle between $Y(D^0 - \ell)$ and nominal $B \cos \theta_{BY}$

- Scaled using luminosities

Belle II

$\int \mathcal{L} dt = 62.8 \text{ fb}^{-1}$

$B \rightarrow D^0 e^- \bar{\nu}_e$

- Signal
- D^*
- Other $B\bar{B}$
- Continuum
- MC stat. unc.
- Data

Belle II

$\int \mathcal{L} dt = 9.2 \text{ fb}^{-1}$

$B \rightarrow D^0 e^- \bar{\nu}_e$

- Signal
- D^*
- Other $B\bar{B}$
- Continuum
- MC stat. unc.
- Data

e mode, continuum data

e mode, off-resonance data
MC agreement - μ

- Angle between $Y(D^0 - \ell)$ and nominal $B \cos \theta_{BY}$
- Scaled using luminosities

Belle II

\[\int \mathcal{L} \, dt = 62.8 \text{ fb}^{-1} \]

- Signal
- D^*
- Other $B\bar{B}$
- Continuum
- MC stat. unc.
- Data

Belle II

\[\int \mathcal{L} \, dt = 9.2 \text{ fb}^{-1} \]

- Signal
- D^*
- Other $B\bar{B}$
- Continuum
- MC stat. unc.
- Data

μ mode, continuum data

μ mode, off-resonance data
Fit

- Binned likelihood fit ROOT's TFractionFitter
- fit range: $|\cos \theta_{BY}| < 4$, 30 bins
- 4 floating templates:
 - signal: selected with BASF2 variable isSignal including missing neutrinos and brems-photons
 - D^*: all events where the B mother of selected lepton decays like $B \to D^*(0,\pm)\ell\nu(\gamma)$
 - other $B\bar{B}$: Candidates from mixed and charged MC that are neither signal nor D^*
 - Continuum: Candidates from continuum MC*

due to sample size we use continuum MC rather than off-resonance data
Post-fit distributions

Belle II

$B^- \rightarrow D^0 e^- \bar{\nu}_e$

\[\int \mathcal{L} \, dt = 62.8 \text{ fb}^{-1} \]

<table>
<thead>
<tr>
<th>Component</th>
<th>e yield</th>
<th>μ yield</th>
</tr>
</thead>
<tbody>
<tr>
<td>Signal</td>
<td>19543.8 ± 648.9</td>
<td>18869.3 ± 636.3</td>
</tr>
<tr>
<td>D^*</td>
<td>65502.9 ± 960.0</td>
<td>67595.0 ± 843.7</td>
</tr>
<tr>
<td>Other $B\bar{B}$</td>
<td>59233.2 ± 2450.2</td>
<td>64899.6 ± 2101.0</td>
</tr>
<tr>
<td>Continuum</td>
<td>79697.7 ± 1970.1</td>
<td>102308.1 ± 1808.6</td>
</tr>
</tbody>
</table>

Philipp Horak (HEPHY)
Branching ratio

\[\text{Br}\left(B^+ \rightarrow D^0 \ell^+ \nu_\ell\right) = \frac{n_{\text{sig}}}{\epsilon \ n_{B^\pm} \ \text{Br}\left(D^0 \rightarrow K^- \pi^+\right)} \]

- \(n_{\text{sig}} \) from fit
- Selection efficiency \(\epsilon = \frac{n_{\text{reco,MC}}}{n_{\text{true,MC}}} \), \(\epsilon^e = 30.12\% \) \(\epsilon^\mu = 30.36\% \)
- \(n_{B^\pm} = 2 \times f^{+-} \times N_{B\bar{B}} = (68.21 \pm 0.06 \, \text{(stat.)} \pm 0.75 \, \text{(sys.)}) \times 10^6 \)
- \(\text{Br}\left(D^0 \rightarrow K^- \pi^+\right) = (3.950 \pm 0.031\%) \)

<table>
<thead>
<tr>
<th></th>
<th>Branching ratio [%]</th>
<th>Relative stat. error</th>
</tr>
</thead>
<tbody>
<tr>
<td>(D \ e \ \nu_e)</td>
<td>2.343 ± 0.075(stat)</td>
<td>3.22%</td>
</tr>
<tr>
<td>(D \ \mu \ \nu_\mu)</td>
<td>2.244 ± 0.075(stat)</td>
<td>3.33%</td>
</tr>
<tr>
<td>(D \ \ell \ \nu_\ell)</td>
<td>2.293 ± 0.053(stat)</td>
<td>2.32%</td>
</tr>
</tbody>
</table>

\[R(e/\mu) = 1.044 \pm 0.068(\text{stat.}) \]

B2N-PH-2021-018
Results

<table>
<thead>
<tr>
<th>Source</th>
<th>electron sample</th>
<th>muon sample</th>
</tr>
</thead>
<tbody>
<tr>
<td>$N_{B\bar{B}}$</td>
<td>1.61</td>
<td>1.61</td>
</tr>
<tr>
<td>$\mathcal{B}(D^0 \to K^-\pi^+)$</td>
<td>0.78</td>
<td>0.78</td>
</tr>
<tr>
<td>Tracking</td>
<td>2.07</td>
<td>2.07</td>
</tr>
<tr>
<td>Lepton identification</td>
<td>1.41</td>
<td>2.38</td>
</tr>
<tr>
<td>MC efficiency (statistical)</td>
<td>0.09</td>
<td>0.09</td>
</tr>
<tr>
<td>$D_{\ell\nu}$ form factor</td>
<td>0.15</td>
<td>0.11</td>
</tr>
<tr>
<td>$D^{*}_{\ell\nu}$ form factor</td>
<td>0.44</td>
<td>0.44</td>
</tr>
<tr>
<td>Continuum shape</td>
<td>0.37</td>
<td>0.37</td>
</tr>
<tr>
<td>Sum</td>
<td>3.14</td>
<td>3.68</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Source</th>
<th>Branching ratio [%]</th>
<th>Relative stat. error</th>
</tr>
</thead>
<tbody>
<tr>
<td>$D \ e \ \nu_e$</td>
<td>2.343 ± 0.075${\text{stat}}$ ± 0.073${\text{syst}}$</td>
<td>3.22%</td>
</tr>
<tr>
<td>$D \ \mu \ \nu_\mu$</td>
<td>2.244 ± 0.075${\text{stat}}$ ± 0.083${\text{syst}}$</td>
<td>3.33%</td>
</tr>
<tr>
<td>$D \ \ell \ \nu_\ell$</td>
<td>2.293 ± 0.053${\text{stat}}$ ± 0.084${\text{syst}}$</td>
<td>2.32%</td>
</tr>
<tr>
<td>$D \ \ell \ \nu_\ell$ (World average)</td>
<td>2.35 ± 0.03${\text{stat}}$ ± 0.09${\text{syst}}$</td>
<td></td>
</tr>
</tbody>
</table>

$R(e/\mu) \quad 1.044 \pm 0.046_{\text{stat}} \pm 0.034_{\text{syst}}$
Fit test

- Validate fit using toy MC test
- scale MC down to 62.8 fb^{-1} and use as pseudodata
- resample pseudodata and templates with poisson weights
- perform fit for each toy and calculate pull $g = \frac{n_{\text{fitted}} - n_{\text{true}}}{\sigma_{\text{fitted}}}$
Systematic uncertainties

Number of B mesons

- $N_{B\bar{B}} = (68.21 \pm 0.06 \text{ (stat.)} \pm 0.75 \text{ (sys.)}) \times 10^6$
- $f^{+-} = 0.514 \pm 0.006$
- add errors in quadrature
- resulting systematic: 1.61%

$\text{Br} \left(D^0 \rightarrow K^-\pi^+ \right)$

- $\text{Br} \left(D^0 \rightarrow K^-\pi^+ \right) = (3.950 \pm 0.031\%)$
- resulting systematic: 0.78%

Tracking

- Correct data-MC disagreement in track finding efficiency
- Recommended recipe: 0.69% systematic per charged track
- Three charged final state tracks: resulting systematic 2.07%
Lepton identification

- Provided tables have associated uncertainties for each p, θ bin
- Generate 300 resampled lepton ID tables (Will’s PIDvar module)
- For each resampled table, calculate amount of signal $n_{reco,MC}$
- Resulting systematic: 1.41% for e, 2.38% for μ
Efficiency statistics

- Finite MC sample for calculating ϵ
 \[\sigma_{\text{binom}} = \sqrt{\frac{p(1-p)}{n}} \]

- Resulting systematic: 0.09%
$D\ell\nu$ form factor uncertainty

- MC13a generator: BGL form factor
- Reweight to CLN with 1 parameter ρ^2 by applying weights based on w
- Vary $\rho^2 \pm 1\sigma$, perform fit, deviation in branching ratio = systematic error

![form factor weights for signal candidates](image)

<table>
<thead>
<tr>
<th>Deviation</th>
<th>Relative change e</th>
<th>Relative change μ</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\rho^2 + \sigma$</td>
<td>+0.155%</td>
<td>+0.105%</td>
</tr>
<tr>
<td>$\rho^2 - \sigma$</td>
<td>-0.028%</td>
<td>-0.04%</td>
</tr>
</tbody>
</table>

- Resulting systematic errors 0.16% and 0.11%
$D^* \ell \nu$ form factor uncertainty

- MC13a generator: CLN form factor
- 3 parameters $\rho^2, R_1(1), R_2(1)$
- vary all $\pm 1\sigma$, perform fit, deviation in branching ratio $=$ systematic error

<table>
<thead>
<tr>
<th>Deviation</th>
<th>Relative change e</th>
<th>Relative change μ</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\rho^2 + \sigma$</td>
<td>-0.318%</td>
<td>-0.296%</td>
</tr>
<tr>
<td>$\rho^2 - \sigma$</td>
<td>+0.307%</td>
<td>0.306%</td>
</tr>
<tr>
<td>$R_1(1) + \sigma$</td>
<td>-0.002%</td>
<td>-0.005%</td>
</tr>
<tr>
<td>$R_1(1) - \sigma$</td>
<td>-0.005%</td>
<td>0.018%</td>
</tr>
<tr>
<td>$R_2(1) + \sigma$</td>
<td>-0.300%</td>
<td>-0.283%</td>
</tr>
<tr>
<td>$R_2(1) - \sigma$</td>
<td>0.291%</td>
<td>0.274%</td>
</tr>
</tbody>
</table>

- Resulting systematic error 0.44%
Continuum shape systematic

- To estimate effect of continuum MC mismatch on fitted branching ratio reweigh
- Divide offres content by continuum bin-by-bin to get ratios
- Fit ratios with a polynomial and apply weight to each continuum candidate based on $\cos \theta_{BY}$

before reweighing

Belle II

$\int Ldt = 9.2 \text{ fb}^{-1}$

- With reweighed continuum MC, fit for branching ratio
- Deviation in branching ratio 0.37%, used as systematic
Bin-by-bin efficiencies

- **V_{cb}** via B^- → $D^0 \ell^- \bar{\nu}_\ell$