
Identifying the Higgs boson production in the 𝑡 ̄𝑡𝐻(𝑏𝑏̄) channel using
quantum classifier models

Vasilis Belis (ETH Zürich)
Joint Annual Meeting of the Austrian Physical Society and Swiss Physical Society 2021
30 August - 3 September 2021, Universität Innsbruck

September 1, 2021

1/12

The 𝑡 ̄𝑡𝐻(𝑏𝑏̄)process

b

q'

q

b

b
b

e+, µ+

v
e
, v

µ

g

g
t

t

+

W–

H

W

g

LO Feynman diagram of the signal and
the dominant background processes in
the semi-leptonic channel.

𝑛features = 8×7(jets)+7(lepton)+4(MET) = 67

Analysis methods for 𝑡 ̄𝑡𝐻(𝑏𝑏̄)utilizing most
features:

• ML models: Boosted Decision Trees
(BDT), Deep Neural Networks (NN)
exploiting all input feature
correlations [ATL20, CMS19].

• Define physics-inspired high-level
variables (𝑚2, jet shape, angular
differences, etc.).

• State-of the art approaches for
𝑡 ̄𝑡𝐻(𝑏𝑏̄) : graph and attention
networks, etc.

2/12

The 𝑡 ̄𝑡𝐻(𝑏𝑏̄)process

b

q'

q

b

b
b

e+, µ+

v
e
, v

µ

g

g
t

t

+

W–

H

W

g

LO Feynman diagram of the signal and
the dominant background processes in
the semi-leptonic channel.

𝑛features = 8×7(jets)+7(lepton)+4(MET) = 67

Analysis methods for 𝑡 ̄𝑡𝐻(𝑏𝑏̄)utilizing most
features:

• ML models: Boosted Decision Trees
(BDT), Deep Neural Networks (NN)
exploiting all input feature
correlations [ATL20, CMS19].

• Define physics-inspired high-level
variables (𝑚2, jet shape, angular
differences, etc.).

• State-of the art approaches for
𝑡 ̄𝑡𝐻(𝑏𝑏̄) : graph and attention
networks, etc.

2/12

Classification with conventional methods

0.0 0.2 0.4 0.6 0.8 1.0
Background Efficiency (FPR)

0.0

0.2

0.4

0.6

0.8

1.0

Si
gn

al
 E

ffi
cie

nc
y

(T
PR

)

N(train): 1827808, N(test) 456952

DNN, AUC = 0.704 ± 0.001
DNN(latent), AUC = 0.623 ± 0.002
BDT, AUC = 0.691 ± 0.001
BDT(latent), AUC = 0.652 ± 0.002

• Assess performance of realistic HEP
approaches on our data set
(Delphes simulation).

• Full CMS simulation yields higher
classifier performance.

• Models trained on full set of input
features (67) and a reduced set (16)
→ benchmark.

• Measure of information loss
(discriminating power reduction).

3/12

Motivation

Why quantum machine learning for HEP?

• Heuristic answer: investigate the new set of ML techniques and methods
available and assess advantages.

• Fundamental motivation: can quantum models utilise the quantum
correlations inherent in HEP data leading to performance advantages?

• Goal in “ML jargon” [KBS21]: Find inductive bias based on prior knowledge on
the data generation (quantum process for HEP data).

• If this bias can be constructed and is classically difficult to simulate
→ quantum advantage.

• Example: quantum algorithm for HEP event shower simulation, produces
accurate results [NPdJB21]. Can simulate naturally the interference diagram.

4/12

Motivation

Why quantum machine learning for HEP?

• Heuristic answer: investigate the new set of ML techniques and methods
available and assess advantages.

• Fundamental motivation: can quantum models utilise the quantum
correlations inherent in HEP data leading to performance advantages?

• Goal in “ML jargon” [KBS21]: Find inductive bias based on prior knowledge on
the data generation (quantum process for HEP data).

• If this bias can be constructed and is classically difficult to simulate
→ quantum advantage.

• Example: quantum algorithm for HEP event shower simulation, produces
accurate results [NPdJB21]. Can simulate naturally the interference diagram.

4/12

Motivation

Why quantum machine learning for HEP?

• Heuristic answer: investigate the new set of ML techniques and methods
available and assess advantages.

• Fundamental motivation: can quantum models utilise the quantum
correlations inherent in HEP data leading to performance advantages?

• Goal in “ML jargon” [KBS21]: Find inductive bias based on prior knowledge on
the data generation (quantum process for HEP data).

• If this bias can be constructed and is classically difficult to simulate
→ quantum advantage.

• Example: quantum algorithm for HEP event shower simulation, produces
accurate results [NPdJB21]. Can simulate naturally the interference diagram.

4/12

Hybrid Quantum-Classical machine learning models

Classical
Data Input

Quantum
Circuit

Measurement Classical
processing

Potential change of circuit parameters

NISQ Device

• Noisy Intermediate Scale Quantum
(NISQ) devices:

• Circuit width: limited number of
qubits (superconducting qubits at
IBM ∼ 50).

• Circuit depth: limited number of
operations per qubit (small
decoherence times).

Quantum Machine learning models for classification:

• Kernel methods → Quantum Support Vector Machine (QSVM)
• Quantum “Neural Networks” → Variational/Parametrized Quantum Circuits
(VQC/PQC)

→ To accommodate NISQ limitations feature reduction is needed.

5/12

Hybrid Quantum-Classical machine learning models

Classical
Data Input

Quantum
Circuit

Measurement Classical
processing

Potential change of circuit parameters

NISQ Device

• Noisy Intermediate Scale Quantum
(NISQ) devices:

• Circuit width: limited number of
qubits (superconducting qubits at
IBM ∼ 50).

• Circuit depth: limited number of
operations per qubit (small
decoherence times).

Quantum Machine learning models for classification:

• Kernel methods → Quantum Support Vector Machine (QSVM)
• Quantum “Neural Networks” → Variational/Parametrized Quantum Circuits
(VQC/PQC)

→ To accommodate NISQ limitations feature reduction is needed.

5/12

Feature Reduction

1. AutoEncoders (AE)

• Two AutoEncoders: one with 16 latent space features and one with 8.
Input Layer

Hidden layer

Hidden layer

Latent space

Hidden layer

Hidden layer

Output Layer

Encoder Decoder

(a) (b)

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
Jet 2 Energy (normalized)

0

5

10

15

20

25

De
ns

ity

Background
Rec. Background
Signal
Rec. Signal

(c)

2. Feature Selection

• Select 16 (8) input variables with the highest discriminative power according
to their AUC score (Area Under Receiver Operating Characteristic curve).

6/12

Support Vector Machines

• SVM objective function is equivalent to (dual
Lagrangian)

maximize 𝐿(𝑐1 … 𝑐𝑛) =
𝑛

∑
𝑖=1

𝑐𝑖 − 1
2

𝑛
∑
𝑖=1

𝑛
∑
𝑗=1

𝑦𝑖𝑐𝑖(𝑥⃗𝑖 ⋅ 𝑥⃗𝑗)𝑦𝑗𝑐𝑗

subject to
𝑛

∑
𝑖=1

𝑐𝑖𝑦𝑖 = 0, and 0 ≤ 𝑐𝑖 ≤ 𝐶 for all 𝑖

• Kernel trick:

(𝑥⃗𝑖 ⋅ 𝑥⃗𝑗) ↦ 𝑘(𝑥⃗𝑖, 𝑥⃗𝑗) ≔ 𝜙(𝑥⃗𝑖) ⋅ 𝜙(𝑥⃗𝑗)

• Make the kernel quantum:

7/12

Support Vector Machines

• SVM objective function is equivalent to (dual
Lagrangian)

maximize 𝐿(𝑐1 … 𝑐𝑛) =
𝑛

∑
𝑖=1

𝑐𝑖 − 1
2

𝑛
∑
𝑖=1

𝑛
∑
𝑗=1

𝑦𝑖𝑐𝑖(𝑥⃗𝑖 ⋅ 𝑥⃗𝑗)𝑦𝑗𝑐𝑗

subject to
𝑛

∑
𝑖=1

𝑐𝑖𝑦𝑖 = 0, and 0 ≤ 𝑐𝑖 ≤ 𝐶 for all 𝑖

• Kernel trick:

(𝑥⃗𝑖 ⋅ 𝑥⃗𝑗) ↦ 𝑘(𝑥⃗𝑖, 𝑥⃗𝑗) ≔ 𝜙(𝑥⃗𝑖) ⋅ 𝜙(𝑥⃗𝑗)

• Make the kernel quantum:

7/12

Support Vector Machines

• SVM objective function is equivalent to (dual
Lagrangian)

maximize 𝐿(𝑐1 … 𝑐𝑛) =
𝑛

∑
𝑖=1

𝑐𝑖 − 1
2

𝑛
∑
𝑖=1

𝑛
∑
𝑗=1

𝑦𝑖𝑐𝑖(𝑥⃗𝑖 ⋅ 𝑥⃗𝑗)𝑦𝑗𝑐𝑗

subject to
𝑛

∑
𝑖=1

𝑐𝑖𝑦𝑖 = 0, and 0 ≤ 𝑐𝑖 ≤ 𝐶 for all 𝑖

• Kernel trick:

(𝑥⃗𝑖 ⋅ 𝑥⃗𝑗) ↦ 𝑘(𝑥⃗𝑖, 𝑥⃗𝑗) ≔ 𝜙(𝑥⃗𝑖) ⋅ 𝜙(𝑥⃗𝑗)

• Make the kernel quantum:

7/12

Variational Quantum Circuits

• Data embedding circuit (feature map) here is fixed.
• Layers of parametrised quantum gates → trainable parameters.

• Output of the model → expectation value of an observable on the prepared state
|𝜓(⃗𝑥, ⃗𝜃)⟩ e.g. measure the first qubit on the computational basis

𝒪 = 𝜎𝑧 ⊗ 𝟙 ⊗ ⋯ ⊗ 𝟙,

𝑓(⃗𝑥, ⃗𝜃) ≔ ⟨𝜓(⃗𝑥, ⃗𝜃)| 𝒪 |𝜓(⃗𝑥, ⃗𝜃)⟩ ≡ ⟨𝜓(⃗𝑥)| 𝐺†(⃗𝜃)𝒪𝐺(⃗𝜃) |𝜓(⃗𝑥)⟩ ≡ ⟨𝒪⟩𝑥⃗, ⃗𝜃.

• Classification: if ⟨𝒪⟩𝑥⃗, ⃗𝜃 > 0.5 → signal, otherwise background.

8/12

Variational Quantum Circuits

• Data embedding circuit (feature map) here is fixed.
• Layers of parametrised quantum gates → trainable parameters.
• Output of the model → expectation value of an observable on the prepared state

|𝜓(⃗𝑥, ⃗𝜃)⟩ e.g. measure the first qubit on the computational basis

𝒪 = 𝜎𝑧 ⊗ 𝟙 ⊗ ⋯ ⊗ 𝟙,

𝑓(⃗𝑥, ⃗𝜃) ≔ ⟨𝜓(⃗𝑥, ⃗𝜃)| 𝒪 |𝜓(⃗𝑥, ⃗𝜃)⟩ ≡ ⟨𝜓(⃗𝑥)| 𝐺†(⃗𝜃)𝒪𝐺(⃗𝜃) |𝜓(⃗𝑥)⟩ ≡ ⟨𝒪⟩𝑥⃗, ⃗𝜃.

• Classification: if ⟨𝒪⟩𝑥⃗, ⃗𝜃 > 0.5 → signal, otherwise background.

8/12

Variational Quantum Circuits

• Data embedding circuit (feature map) here is fixed.
• Layers of parametrised quantum gates → trainable parameters.
• Output of the model → expectation value of an observable on the prepared state

|𝜓(⃗𝑥, ⃗𝜃)⟩ e.g. measure the first qubit on the computational basis

𝒪 = 𝜎𝑧 ⊗ 𝟙 ⊗ ⋯ ⊗ 𝟙,

𝑓(⃗𝑥, ⃗𝜃) ≔ ⟨𝜓(⃗𝑥, ⃗𝜃)| 𝒪 |𝜓(⃗𝑥, ⃗𝜃)⟩ ≡ ⟨𝜓(⃗𝑥)| 𝐺†(⃗𝜃)𝒪𝐺(⃗𝜃) |𝜓(⃗𝑥)⟩ ≡ ⟨𝒪⟩𝑥⃗, ⃗𝜃.

• Classification: if ⟨𝒪⟩𝑥⃗, ⃗𝜃 > 0.5 → signal, otherwise background.

8/12

QSVM results with reduced features

0.0 0.2 0.4 0.6 0.8 1.0
Background Efficiency (FPR)

0.0

0.2

0.4

0.6

0.8

1.0

Si
gn

al
 E

ffi
cie

nc
y

(T
PR

)

Ntrain=576, Ntest=720 (x5)

QSVM (4 qubits): AUC = 0.621 ± 0.031
SVM rbf: AUC = 0.619 ± 0.024
QSVM (8 qubits): AUC = 0.620 ± 0.032
Random Classifier

AE latent features (16)

0.0 0.2 0.4 0.6 0.8 1.0
Background Efficiency (FPR)

0.0

0.2

0.4

0.6

0.8

1.0

Si
gn

al
 E

ffi
cie

nc
y

(T
PR

)

Ntrain=576, Ntest=720 (x5)

QSVM (4 qubits): AUC = 0.657 ± 0.014
SVM rbf: AUC = 0.651 ± 0.010
Random Classifier

AUC-based input feature selection (16)

9/12

VQC results with feature selection

Data encoding for the VQC model [HCTea19]:

Parametrised quantum circuit (“QNN”):

AUC-based input feature selection
(8)

10/12

Summary

Investigated:

• Different quantum algorithms QSVM and VQC.
• Data encoding circuits (amplitude encoding, direct encoding and data
re-uploading).

• Feature dimensionality reduction methods.
• Classical benchmarks against state-of-the-art approaches in HEP and ML.

Our results [BGR+21]:

• Classical and quantum models have similar performance for the challenging
𝑡 ̄𝑡𝐻(𝑏𝑏̄) classification task (in agreement with previous
studies [TKK+21, BS20, WCG+20, MJV+17]).

• The feature reduction procedure is extremely crucial (high impact on model
performance).

11/12

Outlook & ongoing work

• Hybrid quantum-classical Autoencoder-based feature reduction.
• Novel architectures: Preserve/enhance classification power in the latent space.

• Implementation of the algorithms on NISQ devices.
• Assess the effect of the different noise components on model performance.
• Error mitigation protocol if needed.

• Anomaly detection studies for model independent searches in HEP.

12/12

Thank you!

Backup

𝑡 ̄𝑡𝐻(𝑏𝑏̄)process

Why is it important?

• Study the Yukawa couplings of the Higgs in a purely fermionic process
• 𝑡 ̄𝑡𝐻 coupling carries direct information about the scale of new physics [BS15]

→Both processes have identical final state

13/12

Analysis features

Monte Carlo simulation: generation with Powheg v.2, parton shower Pythia 8 and
Delphes v.3.4.1 (CMS Run II settings)

• Nominally: 𝑛jets = 6 and 𝑛b-jets = 4
• Jet observables (8) : (𝑝𝑇 , 𝜂, 𝜙, 𝐸, b-tag, 𝑝𝑥, 𝑝𝑦, 𝑝𝑧)
• Semi-leptonic channel to reduce QCD background

→ 1 lepton and 1 neutrino (MET) per event
• MET observables (4) : (𝑝𝑇 , 𝑝𝑥, 𝑝𝑦, 𝜙)
• Lepton observables (7) : (𝑝𝑇 , 𝜂, 𝜙, 𝐸, 𝑝𝑥, 𝑝𝑦, 𝑝𝑧)
• Keep 7 most energetic jets per event allowing for 1 correction of final or
initial state radiation

⇒ 𝑛features = 8 × 7(jets) +7(lepton) +4(MET) = 67

14/12

Pre-processing and pre-selection

Object pre-selection:

• 𝑝𝑇 > 30 GeV, |𝜂| < 2.1 and iso > 0.1 for the electrons
• 𝑝𝑇 > 26 GeV, |𝜂| < 2.1 and iso > 0.1 for the muons
• 𝑝𝑇 > 30 GeV, |𝜂| < 2.4 for the jets

Event selection:
𝑛jet ≥ 4, 𝑛b-tag ≥ 2 and 𝑛leptons = 1

• b-tag ∈ {0, 1, … , 7}, for different efficiencies

→redefinition: b-tag ′ =
⎧{
⎨{⎩

1, if b-tag > 1
0, otherwise

15/12

Auto-Encoder model

Input Layer

Hidden layer

Hidden layer

Latent space

Hidden layer

Hidden layer

Output Layer

Encoder Decoder

Goal: Preserve non-linear correlations in the
latent representation space

• Developed two models: 8 and
16-dimensional latent space

• Input features normalised to
[0, 1] (min-max scaling)

𝑥𝑖 → 𝑥𝑖 − min(𝑥𝑖)
max(𝑥𝑖) − min(𝑥𝑖)

Model Architecture:
• Fully connected feed forward
layers

• ELU activation functions.
Sigmoid on latent and output
layers

16/12

Auto-Encoder hyperparameters

PyTorch AE TensorFlow AE
Layer Type Dense
Encoder hidden layers 6 7
Latent space dim. 16 8
Loss Mean Square Error (MSE)
Optimizer Adam
Learning Rate 2 × 10−3 √

3 × 10−3

Batch size 128 93
Number of epochs 80 30

17/12

Auto-Encoder training

𝐿(⃗𝜃) = 1
𝑁

𝑁
∑
𝑖=0

| ⃗𝑥 𝑖 − ⃗𝑥 𝑖
⃗𝜃|2

• Data set split 80%/10%/10%
(train/validate/test):
𝑁 train = 1.1 × 106

𝑁 test = 𝑁 valid. = 1.44 × 105

• Compute validation loss after each
epoch (probe for over-training)

• 𝐿test = 6.41 × 10−4

18/12

Reconstruction of the features

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
Jet 2 Energy (normalized)

0

5

10

15

20

25

De
ns

ity

Background
Rec. Background
Signal
Rec. Signal

(d) PyTorch Auto-Encoder (16)

0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70
Lepton pz (normalised)

0

5

10

15

20

De
ns

ity

Background
Signal
Rc. Background
Rc. Signal

(e) TensorFlow Auto-Encoder (8)

19/12

Basics of quantum information processing

The qubit:

|𝜓⟩ = 𝛼 |0⟩+𝛽 |1⟩

≡ cos (𝜃
2) |0⟩+𝑒𝑖𝜙 sin (𝜃

2) |1⟩

Generic qubit operations (quantum gates)
𝑈 = 𝑒−𝑖 ⃗𝜃⋅ 𝜎⃗

2 ∈ SU(2):

𝑈(𝜃, 𝜙, 𝜆) = (cos (𝜃
2) −𝑒𝑖𝜆 sin (𝜃

2)
𝑒𝑖𝜙 sin (𝜃

2) 𝑒𝑖(𝜙+𝜆) cos (𝜃
2))

Construct all possible gates from 𝑈(𝜃, 𝜙, 𝜆)

𝐻 = 1√
2

(1 1
1 −1) ≡ 𝑈 (𝜋

2 , 0, 𝜋)

20/12

Basics of quantum information processing

The qubit:

|𝜓⟩ = 𝛼 |0⟩+𝛽 |1⟩ ≡ cos (𝜃
2) |0⟩+𝑒𝑖𝜙 sin (𝜃

2) |1⟩

Generic qubit operations (quantum gates)
𝑈 = 𝑒−𝑖 ⃗𝜃⋅ 𝜎⃗

2 ∈ SU(2):

𝑈(𝜃, 𝜙, 𝜆) = (cos (𝜃
2) −𝑒𝑖𝜆 sin (𝜃

2)
𝑒𝑖𝜙 sin (𝜃

2) 𝑒𝑖(𝜙+𝜆) cos (𝜃
2))

Construct all possible gates from 𝑈(𝜃, 𝜙, 𝜆)

𝐻 = 1√
2

(1 1
1 −1) ≡ 𝑈 (𝜋

2 , 0, 𝜋)

20/12

Basics of quantum information processing

The qubit:

|𝜓⟩ = 𝛼 |0⟩+𝛽 |1⟩ ≡ cos (𝜃
2) |0⟩+𝑒𝑖𝜙 sin (𝜃

2) |1⟩

Generic qubit operations (quantum gates)
𝑈 = 𝑒−𝑖 ⃗𝜃⋅ 𝜎⃗

2 ∈ SU(2):

𝑈(𝜃, 𝜙, 𝜆) = (cos (𝜃
2) −𝑒𝑖𝜆 sin (𝜃

2)
𝑒𝑖𝜙 sin (𝜃

2) 𝑒𝑖(𝜙+𝜆) cos (𝜃
2))

Construct all possible gates from 𝑈(𝜃, 𝜙, 𝜆)

𝐻 = 1√
2

(1 1
1 −1) ≡ 𝑈 (𝜋

2 , 0, 𝜋)

20/12

Quantum gates and universality

Single qubit gates:
• A generic quantum gate can be
decomposed in a series of 𝑅𝑦 and
𝑅𝑧 [BBC+95]

𝑈(𝜃, 𝜙, 𝜆) = 𝑅𝑧(𝜆)𝑅𝑦(𝜃)𝑅𝑧(𝜙)

• For hardware implementation:
more convenient to decompose to
gates that have a direct physical
operation analogue on the device.

Multi-qubit gates:
• 2-qubit SWAP and CNOT (Control-X)
gates and the 3-qubit Toffolli gate

𝐶𝑋 = ⎛⎜
⎝

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

⎞⎟
⎠

• Any control-𝑈 gate can be written as a
combination of CX, 𝑅𝑦 and 𝑅𝑧 gates.

Quantum Gate Universality [DiV95]: The above “building blocks” can construct any
quantum circuit acting on 𝑛 qubits, i.e. SU(2𝑛), operating on at most two-qubits at a time.

21/12

Quantum gates and universality

Single qubit gates:
• A generic quantum gate can be
decomposed in a series of 𝑅𝑦 and
𝑅𝑧 [BBC+95]

𝑈(𝜃, 𝜙, 𝜆) = 𝑅𝑧(𝜆)𝑅𝑦(𝜃)𝑅𝑧(𝜙)

• For hardware implementation:
more convenient to decompose to
gates that have a direct physical
operation analogue on the device.

Multi-qubit gates:
• 2-qubit SWAP and CNOT (Control-X)
gates and the 3-qubit Toffolli gate

𝐶𝑋 = ⎛⎜
⎝

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

⎞⎟
⎠

• Any control-𝑈 gate can be written as a
combination of CX, 𝑅𝑦 and 𝑅𝑧 gates.

Quantum Gate Universality [DiV95]: The above “building blocks” can construct any
quantum circuit acting on 𝑛 qubits, i.e. SU(2𝑛), operating on at most two-qubits at a time.

21/12

Quantum gates and universality

Single qubit gates:
• A generic quantum gate can be
decomposed in a series of 𝑅𝑦 and
𝑅𝑧 [BBC+95]

𝑈(𝜃, 𝜙, 𝜆) = 𝑅𝑧(𝜆)𝑅𝑦(𝜃)𝑅𝑧(𝜙)

• For hardware implementation:
more convenient to decompose to
gates that have a direct physical
operation analogue on the device.

Multi-qubit gates:
• 2-qubit SWAP and CNOT (Control-X)
gates and the 3-qubit Toffolli gate

𝐶𝑋 = ⎛⎜
⎝

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

⎞⎟
⎠

• Any control-𝑈 gate can be written as a
combination of CX, 𝑅𝑦 and 𝑅𝑧 gates.

Quantum Gate Universality [DiV95]: The above “building blocks” can construct any
quantum circuit acting on 𝑛 qubits, i.e. SU(2𝑛), operating on at most two-qubits at a time.

21/12

Quantum classifiers

Kernel-based models (Quantum Support
Vector Machines):

• Convex optimization tasks
• 𝒪(𝑛2) complexity construction of the
kernel matrix elements

Quantum Neural Networks (Variational
Quantum Circuits):

• Non-convex optimization
• 𝒪(𝑛) complexity

Encoding (embedding) the classical data in a quantum circuit [SP18]:

|𝜓(𝑥)⟩ = 𝐺(⃗𝑥) |0⟩⊗ 𝑛qubits

• Amplitude encoding: exponentially decrease the needed number of qubits but
have deep circuits

• Angle (direct) encoding: map each feature to a separate qubit shallow but wider
circuits

• Data re-uploading [PSCLGFL20]: repeat any data embedding circuit

22/12

Quantum classifiers

Kernel-based models (Quantum Support
Vector Machines):

• Convex optimization tasks
• 𝒪(𝑛2) complexity construction of the
kernel matrix elements

Quantum Neural Networks (Variational
Quantum Circuits):

• Non-convex optimization
• 𝒪(𝑛) complexity

Encoding (embedding) the classical data in a quantum circuit [SP18]:

|𝜓(𝑥)⟩ = 𝐺(⃗𝑥) |0⟩⊗ 𝑛qubits

• Amplitude encoding: exponentially decrease the needed number of qubits but
have deep circuits

• Angle (direct) encoding: map each feature to a separate qubit shallow but wider
circuits

• Data re-uploading [PSCLGFL20]: repeat any data embedding circuit

22/12

Quantum classifiers

Kernel-based models (Quantum Support
Vector Machines):

• Convex optimization tasks
• 𝒪(𝑛2) complexity construction of the
kernel matrix elements

Quantum Neural Networks (Variational
Quantum Circuits):

• Non-convex optimization
• 𝒪(𝑛) complexity

Encoding (embedding) the classical data in a quantum circuit [SP18]:

|𝜓(𝑥)⟩ = 𝐺(⃗𝑥) |0⟩⊗ 𝑛qubits

• Amplitude encoding: exponentially decrease the needed number of qubits but
have deep circuits

• Angle (direct) encoding: map each feature to a separate qubit shallow but wider
circuits

• Data re-uploading [PSCLGFL20]: repeat any data embedding circuit

22/12

Quantum Support Vector Machines

• Sample the kernel
matrix on a quantum
device (multiple
measurements)

• Maximise the SVM
objective function on a
classical computer

Amplitude encoding circuit

𝜙 ∶ ℝ𝑁 → ℋ⊗𝑛qubits ⇒ ⃗𝑥 ∈ ℝ16 → |𝜓𝑥⃗⟩ = 1
4

15
∑
𝑖=0

𝑚𝑖 |𝑖⟩ , 𝑚𝑖 norm. inputs

23/12

Quantum Support Vector Machines

• Sample the kernel
matrix on a quantum
device (multiple
measurements)

• Maximise the SVM
objective function on a
classical computer

Amplitude encoding circuit

𝜙 ∶ ℝ𝑁 → ℋ⊗𝑛qubits ⇒ ⃗𝑥 ∈ ℝ16 → |𝜓𝑥⃗⟩ = 1
4

15
∑
𝑖=0

𝑚𝑖 |𝑖⟩ , 𝑚𝑖 norm. inputs

23/12

Quantum Support Vector Machines

• Sample the kernel
matrix on a quantum
device (multiple
measurements)

• Maximise the SVM
objective function on a
classical computer

Amplitude encoding circuit

𝜙 ∶ ℝ𝑁 → ℋ⊗𝑛qubits ⇒ ⃗𝑥 ∈ ℝ16 → |𝜓𝑥⃗⟩ = 1
4

15
∑
𝑖=0

𝑚𝑖 |𝑖⟩ , 𝑚𝑖 norm. inputs

23/12

Alternative data encoding circuit (8-qubits)

24/12

QSVM results on the input space

0.0 0.2 0.4 0.6 0.8 1.0
Background Efficiency (FPR)

0.0

0.2

0.4

0.6

0.8

1.0

Si
gn

al
 E

ffi
cie

nc
y

(T
PR

)

Ntrain=576, Ntest=720 (x5)

QSVM (6 qubits): AUC = 0.676 ± 0.017
SVM linear: AUC = 0.672 ± 0.017
Random Classifier

64 out of the 67 input features

0.0 0.2 0.4 0.6 0.8 1.0
Background Efficiency (FPR)

0.0

0.2

0.4

0.6

0.8

1.0

Si
gn

al
 E

ffi
cie

nc
y

(T
PR

)

N(train): 1827808, N(test) 456952

DNN, AUC = 0.704 ± 0.001
DNN(latent), AUC = 0.623 ± 0.002
BDT, AUC = 0.691 ± 0.001
BDT(latent), AUC = 0.652 ± 0.002

“Realistic” approach

25/12

QSVM feature reduction benchmarks

Feature selection + Model AUC
INFO + QSVM 0.66 ± 0.01

PyTorch AE + QSVM 0.62 ± 0.03
INFO + SVM rbf 0.65 ± 0.01

PyTorch AE + SVM rbf 0.62 ± 0.02
KMeans + SVM rbf 0.61 ± 0.02

(a) 16 input variables

Feature selection + Model AUC
INFO + QSVM 0.68 ± 0.02

INFO + Linear SVM 0.67 ± 0.02
Logistic Regression 0.68 ± 0.02

(b) 64 (QSVM, LSVM) and 67 (LR) input variables

• Trained and tested (same data set size) a collection of classical models (SVMs,
Logistic Regression, BDT, Random Forests, Multilayer Perceptrons, kNN, Naive Bayes
and QDA).

• Feature extraction techniques: PCA, K-means, Truncated SVD, Isomap and Locally
Linear Embedding.

26/12

VQC benchmarks

Feature selection + Model AUC
INFO + VQC 0.66 ± 0.01

INFO + Random Forest 0.66 ± 0.02
KMeans + Log. Regr. 0.64 ± 0.01

TensorFlow AE + AdaBoost 0.63 ± 0.03

• Needs more training data to achieve same performance as QSVM.
• VQC poor performance with amp. enc. 16 features and 8 AE features (AUC∼ 0.55)
→ resort to feature selection of 8 input features.

27/12

References i

Measurement of the Higgs boson decaying to 𝑏-quarks produced in
association with a top-quark pair in 𝑝𝑝 collisions at

√𝑠 = 13 TeV with the
ATLAS detector, Tech. Report ATLAS-CONF-2020-058, CERN, Geneva, Nov 2020.

Adriano Barenco, Charles H. Bennett, Richard Cleve, David P. DiVincenzo,
Norman Margolus, Peter Shor, Tycho Sleator, John A. Smolin, and Harald
Weinfurter, Elementary gates for quantum computation, Phys. Rev. A 52 (1995),
3457–3467.
Belis Vasilis, González-Castillo Samuel, Reissel Christina, Vallecorsa Sofia,
Combarro Elías F., Dissertori Günther, and Reite Florentin, Higgs analysis with
quantum classifiers, EPJ Web Conf. 251 (2021), 03070.

28/12

References ii

F. Bezrukov and M. Shaposhnikov, Why should we care about the top quark
yukawa coupling?, Journal of Experimental and Theoretical Physics 120 (2015),
no. 3, 335–343.
Andrew Blance and Michael Spannowsky, Quantum machine learning for
particle physics using a variational quantum classifier, arXiv preprint
arXiv:2010.07335 (2020).
Measurement of ttH production in the H → bb decay channel in 41.5 fb−1 of
proton-proton collision data at

√𝑠 = 13 TeV, Tech. Report
CMS-PAS-HIG-18-030, CERN, Geneva, 2019.
David P. DiVincenzo, Two-bit gates are universal for quantum computation,
Phys. Rev. A 51 (1995), 1015–1022.

29/12

References iii

V. Havlíček, A.D. Córcoles, K. Temme, and et al, Supervised learning with
quantum-enhanced feature spaces, Nature 567 (2019), 209–212.
Jonas M. Kübler, Simon Buchholz, and Bernhard Schölkopf, The inductive bias
of quantum kernels, 2021.

Alex Mott, Joshua Job, Jean-Roch Vlimant, Daniel Lidar, and Maria Spiropulu,
Solving a higgs optimization problem with quantum annealing for machine
learning, Nature 550 (2017), no. 7676, 375–379.

Benjamin Nachman, Davide Provasoli, Wibe A. de Jong, and Christian W. Bauer,
Quantum algorithm for high energy physics simulations, Phys. Rev. Lett. 126
(2021), 062001.
Adrián Pérez-Salinas, Alba Cervera-Lierta, Elies Gil-Fuster, and José I Latorre,
Data re-uploading for a universal quantum classifier, Quantum 4 (2020), 226.

30/12

References iv

Maria Schuld and Francesco Petruccione, Supervised learning with quantum
computers, Springer International Publishing, 2018.

Koji Terashi, Michiru Kaneda, Tomoe Kishimoto, Masahiko Saito, Ryu Sawada,
and Junichi Tanaka, Event classification with quantum machine learning in
high-energy physics, Computing and Software for Big Science 5 (2021), no. 1,
1–11.
Sau Lan Wu, Jay Chan, Wen Guan, Shaojun Sun, Alex Wang, Chen Zhou, Miron
Livny, Federico Carminati, Alberto Di Meglio, Andy CY Li, et al., Application of
quantum machine learning using the quantum variational classifier method
to high energy physics analysis at the lhc on ibm quantum computer
simulator and hardware with 10 qubits, arXiv preprint arXiv:2012.11560 (2020).

31/12

	Backup

