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The 𝑡 ̄𝑡𝐻(𝑏𝑏̄)process
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LO Feynman diagram of the signal and
the dominant background processes in
the semi-leptonic channel.

𝑛features = 8×7(jets)+7(lepton)+4(MET) = 67

Analysis methods for 𝑡 ̄𝑡𝐻(𝑏𝑏̄)utilizing most
features:

• ML models: Boosted Decision Trees
(BDT), Deep Neural Networks (NN)
exploiting all input feature
correlations [ATL20, CMS19].

• Define physics-inspired high-level
variables (𝑚2, jet shape, angular
differences, etc.).

• State-of the art approaches for
𝑡 ̄𝑡𝐻(𝑏𝑏̄) : graph and attention
networks, etc.
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Classification with conventional methods
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N(train): 1827808, N(test) 456952

DNN, AUC = 0.704 ± 0.001
DNN(latent), AUC = 0.623 ± 0.002
BDT, AUC = 0.691 ± 0.001
BDT(latent), AUC = 0.652 ± 0.002

• Assess performance of realistic HEP
approaches on our data set
(Delphes simulation).

• Full CMS simulation yields higher
classifier performance.

• Models trained on full set of input
features (67) and a reduced set (16)
→ benchmark.

• Measure of information loss
(discriminating power reduction).
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Motivation

Why quantum machine learning for HEP?

• Heuristic answer: investigate the new set of ML techniques and methods
available and assess advantages.

• Fundamental motivation: can quantum models utilise the quantum
correlations inherent in HEP data leading to performance advantages?

• Goal in “ML jargon” [KBS21]: Find inductive bias based on prior knowledge on
the data generation (quantum process for HEP data).

• If this bias can be constructed and is classically difficult to simulate
→ quantum advantage.

• Example: quantum algorithm for HEP event shower simulation, produces
accurate results [NPdJB21]. Can simulate naturally the interference diagram.
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Hybrid Quantum-Classical machine learning models

Classical
Data Input

Quantum
Circuit

Measurement Classical
processing 

Potential change of circuit parameters

NISQ Device

• Noisy Intermediate Scale Quantum
(NISQ) devices:

• Circuit width: limited number of
qubits (superconducting qubits at
IBM ∼ 50).

• Circuit depth: limited number of
operations per qubit (small
decoherence times).

Quantum Machine learning models for classification:

• Kernel methods → Quantum Support Vector Machine (QSVM)
• Quantum “Neural Networks” → Variational/Parametrized Quantum Circuits
(VQC/PQC)

→ To accommodate NISQ limitations feature reduction is needed.
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Feature Reduction

1. AutoEncoders (AE)

• Two AutoEncoders: one with 16 latent space features and one with 8.
Input Layer

Hidden layer

Hidden layer

Latent space

Hidden layer

Hidden layer

Output Layer

Encoder Decoder

(a) (b)
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2. Feature Selection

• Select 16 (8) input variables with the highest discriminative power according
to their AUC score (Area Under Receiver Operating Characteristic curve).
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Support Vector Machines

• SVM objective function is equivalent to (dual
Lagrangian)

maximize 𝐿(𝑐1 … 𝑐𝑛) =
𝑛

∑
𝑖=1

𝑐𝑖 − 1
2

𝑛
∑
𝑖=1

𝑛
∑
𝑗=1

𝑦𝑖𝑐𝑖(𝑥⃗𝑖 ⋅ 𝑥⃗𝑗)𝑦𝑗𝑐𝑗

subject to
𝑛

∑
𝑖=1

𝑐𝑖𝑦𝑖 = 0, and 0 ≤ 𝑐𝑖 ≤ 𝐶 for all 𝑖

• Kernel trick:

(𝑥⃗𝑖 ⋅ 𝑥⃗𝑗) ↦ 𝑘(𝑥⃗𝑖, 𝑥⃗𝑗) ≔ 𝜙(𝑥⃗𝑖) ⋅ 𝜙(𝑥⃗𝑗)

• Make the kernel quantum:
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Variational Quantum Circuits

• Data embedding circuit (feature map) here is fixed.
• Layers of parametrised quantum gates → trainable parameters.

• Output of the model → expectation value of an observable on the prepared state
|𝜓( ⃗𝑥, ⃗𝜃 )⟩ e.g. measure the first qubit on the computational basis

𝒪 = 𝜎𝑧 ⊗ 𝟙 ⊗ ⋯ ⊗ 𝟙,

𝑓( ⃗𝑥, ⃗𝜃) ≔ ⟨𝜓( ⃗𝑥, ⃗𝜃)| 𝒪 |𝜓( ⃗𝑥, ⃗𝜃)⟩ ≡ ⟨𝜓( ⃗𝑥)| 𝐺†( ⃗𝜃)𝒪𝐺( ⃗𝜃) |𝜓( ⃗𝑥)⟩ ≡ ⟨𝒪⟩𝑥⃗, ⃗𝜃.

• Classification: if ⟨𝒪⟩𝑥⃗, ⃗𝜃 > 0.5 → signal, otherwise background.
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QSVM results with reduced features
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Ntrain=576, Ntest=720 (x5)

QSVM (4 qubits): AUC = 0.621 ± 0.031
SVM rbf: AUC = 0.619 ± 0.024
QSVM (8 qubits): AUC = 0.620 ± 0.032
Random Classifier

AE latent features (16)
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Ntrain=576, Ntest=720 (x5)

QSVM (4 qubits): AUC = 0.657 ± 0.014
SVM rbf: AUC = 0.651 ± 0.010
Random Classifier

AUC-based input feature selection (16)

9/12



VQC results with feature selection

Data encoding for the VQC model [HCTea19]:

Parametrised quantum circuit (“QNN”):

AUC-based input feature selection
(8)
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Summary

Investigated:

• Different quantum algorithms QSVM and VQC.
• Data encoding circuits (amplitude encoding, direct encoding and data
re-uploading).

• Feature dimensionality reduction methods.
• Classical benchmarks against state-of-the-art approaches in HEP and ML.

Our results [BGR+21]:

• Classical and quantum models have similar performance for the challenging
𝑡 ̄𝑡𝐻(𝑏𝑏̄) classification task (in agreement with previous
studies [TKK+21, BS20, WCG+20, MJV+17]).

• The feature reduction procedure is extremely crucial (high impact on model
performance).
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Outlook & ongoing work

• Hybrid quantum-classical Autoencoder-based feature reduction.
• Novel architectures: Preserve/enhance classification power in the latent space.

• Implementation of the algorithms on NISQ devices.
• Assess the effect of the different noise components on model performance.
• Error mitigation protocol if needed.

• Anomaly detection studies for model independent searches in HEP.
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Thank you!



Backup



𝑡 ̄𝑡𝐻(𝑏𝑏̄)process

Why is it important?

• Study the Yukawa couplings of the Higgs in a purely fermionic process
• 𝑡 ̄𝑡𝐻 coupling carries direct information about the scale of new physics [BS15]

→Both processes have identical final state
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Analysis features

Monte Carlo simulation: generation with Powheg v.2, parton shower Pythia 8 and
Delphes v.3.4.1 (CMS Run II settings)

• Nominally: 𝑛jets = 6 and 𝑛b-jets = 4
• Jet observables (8) : (𝑝𝑇 , 𝜂, 𝜙, 𝐸, b-tag, 𝑝𝑥, 𝑝𝑦, 𝑝𝑧)
• Semi-leptonic channel to reduce QCD background

→ 1 lepton and 1 neutrino (MET) per event
• MET observables (4) : (𝑝𝑇 , 𝑝𝑥, 𝑝𝑦, 𝜙)
• Lepton observables (7) : (𝑝𝑇 , 𝜂, 𝜙, 𝐸, 𝑝𝑥, 𝑝𝑦, 𝑝𝑧)
• Keep 7 most energetic jets per event allowing for 1 correction of final or
initial state radiation

⇒ 𝑛features = 8 × 7(jets) +7(lepton) +4(MET) = 67
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Pre-processing and pre-selection

Object pre-selection:

• 𝑝𝑇 > 30 GeV, |𝜂| < 2.1 and iso > 0.1 for the electrons
• 𝑝𝑇 > 26 GeV, |𝜂| < 2.1 and iso > 0.1 for the muons
• 𝑝𝑇 > 30 GeV, |𝜂| < 2.4 for the jets

Event selection:
𝑛jet ≥ 4, 𝑛b-tag ≥ 2 and 𝑛leptons = 1

• b-tag ∈ {0, 1, … , 7}, for different efficiencies

→redefinition: b-tag ′ =
⎧{
⎨{⎩

1, if b-tag > 1
0, otherwise
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Auto-Encoder model

Input Layer

Hidden layer

Hidden layer

Latent space

Hidden layer

Hidden layer

Output Layer

Encoder Decoder

Goal: Preserve non-linear correlations in the
latent representation space

• Developed two models: 8 and
16-dimensional latent space

• Input features normalised to
[0, 1] (min-max scaling)

𝑥𝑖 → 𝑥𝑖 − min(𝑥𝑖)
max(𝑥𝑖) − min(𝑥𝑖)

Model Architecture:
• Fully connected feed forward
layers

• ELU activation functions.
Sigmoid on latent and output
layers

16/12



Auto-Encoder hyperparameters

PyTorch AE TensorFlow AE
Layer Type Dense
Encoder hidden layers 6 7
Latent space dim. 16 8
Loss Mean Square Error (MSE)
Optimizer Adam
Learning Rate 2 × 10−3 √

3 × 10−3

Batch size 128 93
Number of epochs 80 30
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Auto-Encoder training

𝐿( ⃗𝜃) = 1
𝑁

𝑁
∑
𝑖=0

| ⃗𝑥 𝑖 − ⃗𝑥 𝑖
⃗𝜃|2

• Data set split 80%/10%/10%
(train/validate/test):
𝑁 train = 1.1 × 106

𝑁 test = 𝑁 valid. = 1.44 × 105

• Compute validation loss after each
epoch (probe for over-training)

• 𝐿test = 6.41 × 10−4
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Reconstruction of the features
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(d) PyTorch Auto-Encoder (16)
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(e) TensorFlow Auto-Encoder (8)

19/12



Basics of quantum information processing

The qubit:

|𝜓⟩ = 𝛼 |0⟩+𝛽 |1⟩

≡ cos ( 𝜃
2) |0⟩+𝑒𝑖𝜙 sin ( 𝜃

2) |1⟩

Generic qubit operations (quantum gates)
𝑈 = 𝑒−𝑖 ⃗𝜃⋅ 𝜎⃗

2 ∈ SU(2):

𝑈(𝜃, 𝜙, 𝜆) = ( cos ( 𝜃
2 ) −𝑒𝑖𝜆 sin ( 𝜃

2 )
𝑒𝑖𝜙 sin ( 𝜃

2 ) 𝑒𝑖(𝜙+𝜆) cos ( 𝜃
2 ))

Construct all possible gates from 𝑈(𝜃, 𝜙, 𝜆)

𝐻 = 1√
2

(1 1
1 −1) ≡ 𝑈 (𝜋

2 , 0, 𝜋)
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Quantum gates and universality

Single qubit gates:
• A generic quantum gate can be
decomposed in a series of 𝑅𝑦 and
𝑅𝑧 [BBC+95]

𝑈(𝜃, 𝜙, 𝜆) = 𝑅𝑧(𝜆)𝑅𝑦(𝜃)𝑅𝑧(𝜙)

• For hardware implementation:
more convenient to decompose to
gates that have a direct physical
operation analogue on the device.

Multi-qubit gates:
• 2-qubit SWAP and CNOT (Control-X)
gates and the 3-qubit Toffolli gate

𝐶𝑋 = ⎛⎜
⎝

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

⎞⎟
⎠

• Any control-𝑈 gate can be written as a
combination of CX, 𝑅𝑦 and 𝑅𝑧 gates.

Quantum Gate Universality [DiV95]: The above “building blocks” can construct any
quantum circuit acting on 𝑛 qubits, i.e. SU(2𝑛), operating on at most two-qubits at a time.
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Quantum classifiers

Kernel-based models (Quantum Support
Vector Machines):

• Convex optimization tasks
• 𝒪(𝑛2) complexity construction of the
kernel matrix elements

Quantum Neural Networks (Variational
Quantum Circuits):

• Non-convex optimization
• 𝒪(𝑛) complexity

Encoding (embedding) the classical data in a quantum circuit [SP18]:

|𝜓(𝑥)⟩ = 𝐺( ⃗𝑥) |0⟩⊗ 𝑛qubits

• Amplitude encoding: exponentially decrease the needed number of qubits but
have deep circuits

• Angle (direct) encoding: map each feature to a separate qubit shallow but wider
circuits

• Data re-uploading [PSCLGFL20]: repeat any data embedding circuit
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Quantum Support Vector Machines

• Sample the kernel
matrix on a quantum
device (multiple
measurements)

• Maximise the SVM
objective function on a
classical computer

Amplitude encoding circuit

𝜙 ∶ ℝ𝑁 → ℋ⊗𝑛qubits ⇒ ⃗𝑥 ∈ ℝ16 → |𝜓𝑥⃗⟩ = 1
4

15
∑
𝑖=0

𝑚𝑖 |𝑖⟩ , 𝑚𝑖 norm. inputs
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Alternative data encoding circuit (8-qubits)
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QSVM results on the input space
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Ntrain=576, Ntest=720 (x5)

QSVM (6 qubits): AUC = 0.676 ± 0.017
SVM linear: AUC = 0.672 ± 0.017
Random Classifier

64 out of the 67 input features
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N(train): 1827808, N(test) 456952

DNN, AUC = 0.704 ± 0.001
DNN(latent), AUC = 0.623 ± 0.002
BDT, AUC = 0.691 ± 0.001
BDT(latent), AUC = 0.652 ± 0.002

“Realistic” approach
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QSVM feature reduction benchmarks

Feature selection + Model AUC
INFO + QSVM 0.66 ± 0.01

PyTorch AE + QSVM 0.62 ± 0.03
INFO + SVM rbf 0.65 ± 0.01

PyTorch AE + SVM rbf 0.62 ± 0.02
KMeans + SVM rbf 0.61 ± 0.02

(a) 16 input variables

Feature selection + Model AUC
INFO + QSVM 0.68 ± 0.02

INFO + Linear SVM 0.67 ± 0.02
Logistic Regression 0.68 ± 0.02

(b) 64 (QSVM, LSVM) and 67 (LR) input variables

• Trained and tested (same data set size) a collection of classical models (SVMs,
Logistic Regression, BDT, Random Forests, Multilayer Perceptrons, kNN, Naive Bayes
and QDA).

• Feature extraction techniques: PCA, K-means, Truncated SVD, Isomap and Locally
Linear Embedding.
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VQC benchmarks

Feature selection + Model AUC
INFO + VQC 0.66 ± 0.01

INFO + Random Forest 0.66 ± 0.02
KMeans + Log. Regr. 0.64 ± 0.01

TensorFlow AE + AdaBoost 0.63 ± 0.03

• Needs more training data to achieve same performance as QSVM.
• VQC poor performance with amp. enc. 16 features and 8 AE features (AUC∼ 0.55)
→ resort to feature selection of 8 input features.
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