

Measurements of the Higgs boson to bottom quark coupling (STXS measurements for VHbb resolved topology) HIG-20-001

Krunal Gedia, On behalf of the CMS Collaboration

Joint Annual Meeting of SPS and OPG

University of Innsbruck 30th Aug - 3rd Sept 2021

2/09/2021

mas

Gen

Quarks

Up (u), Down (d)

Top (t), **Bottom (b)**

Charm (c), Strange (s)

Standard model of elementary particles

Electron (e), e neutrino

Muon (μ), μ neutrino

Tau (τ), τ neutrino

ETHzürich

Fermions/ Matter

Leptons

- Z boson Higgs boson
- Photon (γ)
- W boson
- Gluon (g)

2/09/2021

ETH zürich

Advantages: Reduce theoretical unc., NP models study, allows complexity, combine ATLAS & CMS results, boosted

- **<u>Object reconstruction:</u>** Reconstruct Higgs and vector boson.
- **Event Selection:** Derive signal enriched and background enriched regions by applying kinematic cuts.
- <u>Likelihood fit:</u> Choose some discriminatory variable in each of these regions and perform extended likelihood fit.

Object reconstruction

ETH zürich

2/09/2021

Higgs boson:

Two jets with highest b-tagging score

Improving jet mass resolution \rightarrow dijet mass resolution

- DNN-based bjet regression
 - Energy correction due to escaping neutrino

Kinematic fit (2 lepton channel)

- Constraints m(II) = m(Z) and pT(total) = 0.
- Get constraints on jet resolution

- **<u>Object reconstruction</u>**: Reconstruct Higgs and vector boson.
- **Event Selection:** Derive signal enriched and background enriched regions by applying kinematic cuts.
- <u>Likelihood fit:</u> Choose some discriminatory variable in each of these regions and perform extended likelihood fit.

Event Selection

- High signal efficiency.
- Purity (S/B ~ 1 5%).
- Used to extract signal strength/significance in combined fit.

Control region (CR)

- Enriched in one of the dominant background.
- Constrain normalisation of background processes in combined fit.

ETH zürich

- **Object reconstruction:** Reconstruct Higgs and vector boson.
- **Event Selection:** Derive signal enriched and background enriched regions by applying kinematic cuts.
- Likelihood fit: Choose some discriminatory variable in each of these regions and perform extended likelihood fit.

What do we fit?

ETH zürich

2/09/2021

٠

Multivariate variables (DNN)

ETH zürich

2/09/2021

Expected VH results (resolved + boosted)

Uncertainties in STXS bins are statistically dominated!

★ Resolved+boosted topology

2/09/2021

Anomalous coupling + Differential Status: Just started internally in CMS

Back - Up

Signal: "Higgs-Strahlung" Higgs produced with an associated vector boson

Why VHbb to study $H \rightarrow bb \ coupling$?

- boost of the V-boson \rightarrow QCD/V+Jets background
- Leptonic V decay \rightarrow Trigger
- Large MET \rightarrow Trigger

CMS/

CMS detector

b-jet b-tracks e+/- tracks b-jet pp→Zŀ + b 1 centimeter 1 centimeter 0.4 inches 0.4 inches **b**-jet typical jet from typical jet from upquark bottom quark light "secondary" vertex where b jet hadron decaved collision point collision point M. Strassler 2012 Identification of jet flavor (b-tagging)

2/09/2021

 $\sqrt{s} = 13 \text{ TeV} (2017)$

b-tracks

Advantages: Reduce theoretical unc., NP models study, allows complexity, combine ATLAS & CMS results, boosted

DNN-based b-jet regression [link]:

 Energy correction due to escaping neutrino from semi-leptonic decay, calibration mis-match.

- Kinematic fit: (only in two lepton channel)
- leptons have better momentum resolution than jets
 no intrinsic MET
- Fit leptons and jets with uncertainties under constraints m(II) = m(Z) and pT(total) = 0.
- Thus, get constraints on individual jets resolution.

20

FSR recovery: (all channels)

Add 4-vectors of FSR jets in defined cone around b-jets.

Dedicated smearing

- Good detector resolution of leptons allows us to use Z(II)bb process
- The jet resolution can be measured by assuming it is balanced against the Z in the transverse plane.
- Apply tight b-tag cut on the leading jet and fix scale to 1.0
- So as α = pt(sub)/pt(II) → 0, we get one jet process through which we can extract resolution of data and MC and thus get scaling/smearing factors.
- Scale unc. are correlated while the smearing unc. decorrelated for signal & bkg.

Event selection

CM

Treatement of overlap events explained in Christina's talk [link]

example input features (full list in AN)

Multivariate variables

DNN/HF DNN:

 Channel dependent 15-27 high-level input features whose data/MC is verified in CR.

BDT:

- Uses FatJet kinematic variables
 + deepAK8.
- Overlap events have resolved features as well.

Background modelling

For ST, VV: 15% unc. on cross section.

For each of the TT, V+udsg, V+c, V+b processes in fit are obtained using

Background process scale factors

↓ = SFs fully correlated red = new since last Hbb meeting update

zürich

Simultaneous fit of SR and CR to obtain signal strength/significance

ETH zürich

ETH zürich

Results of simultaneous fit

SF of background normalization

Process	$Z(\nu\nu)H$	$W(\ell \nu)H$	$Z(\ell\ell)H \text{ low-}p_T$	$Z(\ell\ell)$ H high- p_T
W+udscg	1.04 ± 0.07	1.04 ± 0.07	_	_
W+b	2.09 ± 0.16	2.09 ± 0.16	_	_
$W + b\overline{b}$	1.74 ± 0.21	1.74 ± 0.21	_	_
Z + udscg	0.95 ± 0.09	_	0.89 ± 0.06	0.81 ± 0.05
Z+b	1.02 ± 0.17	_	0.94 ± 0.12	1.17 ± 0.10
$Z + b\overline{b}$	1.20 ± 0.11	_	0.81 ± 0.07	0.88 ± 0.08
tī	0.99 ± 0.07	0.93 ± 0.07	0.89 ± 0.07	0.91 ± 0.07

Uncertainty source	$\Delta \mu$	
Statistical	+0.26	-0.26
Normalization of backgrounds	+0.12	-0.12
Experimental	+0.16	-0.15
b-tagging efficiency and misid	+0.09	-0.08
V+jets modeling	+0.08	-0.07
Jet energy scale and resolution	+0.05	-0.05
Lepton identification	+0.02	-0.01
Luminosity	+0.03	-0.03
Other experimental uncertainties	+0.06	-0.05
MC sample size	+0.12	-0.12
Theory	+0.11	-0.09
Background modeling	+0.08	-0.08
Signal modeling	+0.07	-0.04
Total	+0.35	-0.33

ETH zürich

Combination with other Higgs production channels (where $H \rightarrow bb$)

ETH zürich

mjj cross-check analysis

- Fit mjj distribution in 4 different bins of DNN score for SR.
- Same CR used in the fit.
- Combine SR post-fit mjj distribution of all channels by weighting events with S/(S+B).
- Sensitivity little lower than for fit with DNN score.

ETH zürich

VZ(bb) cross-check analysis

- Take VZ(bb) as signal instead of VH(bb).
- Same final state, similar kinematics but different dijet invariant mass.

