The SND@LHC data acquisition system

Ettore Zaffaroni
SPS - ÖPG Joint Annual Meeting
02/09/2021
Outline

- The SND@LHC detector
- Detector preparation
- Data Acquisition (DAQ) system
SND@LHC

- Scattering and Neutrino Detector at the LHC
 - 24 institutes in 13 countries
 - In Switzerland: EPFL and UZH
- Compact experiment, optimised for detecting the 3 neutrino flavours
- Experiment approved by the research board in March 2021
- Assembly and preparatory works currently ongoing

- Physics programme
 - Measurement of the $pp \rightarrow \nu_e X$ cross-section
 - Heavy flavour production in pp collisions
 - Lepton flavour universality in neutrino interactions
 - Measurement of the NC/CC ratio
 - Search for non-SM feebly-interacting particles
Location

- TI18 tunnel
 - Former service tunnel connecting SPS to LEP
 - Symmetric to TI12, where FASER is located
- ~480 m from ATLAS interaction point
 - Shielded with ~100 m of rock
- Angular acceptance: 7.2 < η < 8.6
 - Offset wrt collision axis
SND@LHC

- **Veto**
 - Scintillators: tag incoming muons

- **Target region**
 - Emulsion cloud chambers (830 kg): neutrino interaction detection
 - Scintillating fibres tracker: timestamp, position and energy measurement

- **Muon system**
 - Iron walls and scintillators: energy measurement and muon detection
Tunnel preparation

- Ongoing preparatory works
- Services installation
- Cryostat protection
Detector assembly

- Assembly and testing currently ongoing
 - SciFi tracker and DAQ at EPFL
 - Veto and muon system at CERN
- Full detector commissioning at CERN starting this month
- Installation in the tunnel in November
The DAQ system

- Veto, SciFi tracker, muon system read-out with common DAQ board
 - 37 boards used
 - Synchronous to LHC clock
 - Data transmitted to server on the surface

- TTC system receives LHC clock from BST and distributes it to DAQ boards

TTC: Timing, Trigger and Control
BST: Beam Synchronous Timing
The DAQ boards

• Same DAQ board for all subsystems

• Developed at EPFL, based on Cyclone V processor+FPGA
 – Clock from TTC system, using TTCrx chip
 – Data transmitted over Ethernet to the server

• 4 front-end board slots
 – 512 channels in total
The front-end boards

- Each board contains 2 TOFPET2 chips
 - Analogue front-end and ADCs
 - Data fully digitized
 - 128 channels in total
- Allows for low signal thresholds (1.5 pe)
 - 3-threshold system for best time and amplitude resolution and dark noise reduction
- Good timing (40 ps resolution) and amplitude measurement with charge integration or time-over-threshold
The DAQ system

- Triggerless system
 - All data above threshold is sent to the server

- Event building
 - Hits from all boards are built into events based on timestamp

- Online noise suppression
 - Events required to have signal from a minimum number of boards

- Valid events saved to disk
First data

- First test of DAQ system performed on SciFi tracker
- Detector oriented to take cosmic rays data
- First runs
 - Determine event building capabilities (max hit rate ~ 200 kHz)
 - Find best thresholds and parameters
First data

• First test of DAQ system performed on SciFi tracker
• Detector oriented to take cosmic rays data
• First runs
 - Determine event building capabilities (max hit rate ~ 200 kHz)
 - Find best thresholds and parameters
Conclusions

- SND@LHC is a compact detector optimized for the 3 neutrino flavours
- Its construction is underway, expected installation at the end of the year
- DAQ system based on custom DAQ board and front-end
 - Triggerless readout
 - Online event building and noise suppression
- System performance is being evaluated
Backup
Performance assessment

• Efficiency measurement
 – With tracks reconstruction

• Channels time alignment
 – Using light injection system

• Time/energy resolution evaluation

• Will be performed in the coming weeks