Silicon sensor development for the High Granularity Calorimeter of the CMS experiment at CERN via Process Quality Control

Maximilian Babeluk

ÖPG & SPS Joint Annual Meeting 2021

September 02, 2021
Endcap calorimeter highly irradiated
→ High radiation tolerance required

Up to 200 pile-up events per bunch crossing at target luminosity
→ High spatial resolution required

- New endcap calorimeter design: **High Granularity Calorimeter**
- Silicon detectors together with "conventional" scintillators
- Si sensors radiation harder and provide higher resolution
- Allows particle flow analysis

Silicon sensor development for HGCal
Maximilian Babeluk
HGCal Design

- Hexagonal shape ➞ tiling
- Total Si sensor area: \(\approx 500 \text{ m}^2 \)
on \(\approx 26000 \) wafers
- Three different thicknesses of sensors:
 - 120 \(\mu \text{m} \) / 432 pads each
 - 200 \(\mu \text{m} \) / 192 pads each
 - 300 \(\mu \text{m} \) / 192 pads each
- Pad sizes: 0.52 and 1.18 cm\(^2\)
HGCal Silicon Modules

- Hexagonal modules with one sensor each
- Wire-bonds from silicon to PCB
- DC coupled readout
- Readout electronics on PCB

- new 8 inch production process
 ➔ extensive prototyping necessary
Why Test-structures?

- Hexagonal (or rectangular) sensor cut out from round wafer
 → Maximises usable area
 → Still a tilable shape
- Test-structures on the cutoffs
- Electronic characterisation of production parameters via test-structures
- More information than from direct sensor measurements
What is PQC?

- Process Quality Control
- Dedicated test-structures + measurement setup
- Defined contact layout
- High throughput characterisation
- High degree of automation
- Non-destructive
- All important semiconductor parameters covered

Silicon sensor development for HGCal

Maximilian Babeluk
PQC Setup in Vienna

- Custom python software to control measurement flow
- Instruments connected software controlled

Silicon sensor development for HGCal

Maximilian Babeluk
What can PQC do?

PQC
High throughput characterisation

Production:
- Currently in use for the tracker
- Monitor production
- Spot deviations from specs
- Ability to test more wafers compared to other QA processes
- Procedure used and verified by 4 institutes

Prototyping:
- Currently used for HGCal
- Access to many parameters
- Spot differences of process splits
- Practical for large surveys
- Comparison with tracker possible

Silicon sensor development for HGCal
Maximilian Babeluk
Example: MOS Capacitor

- Measurement of oxide properties:
- Oxide thickness
- Flatband voltage ➔ Bound ox. charge
- Important for pad-separation
<table>
<thead>
<tr>
<th>No.</th>
<th>Diode</th>
<th>Metal VdP</th>
<th>p-edge</th>
<th>Bulk VdP</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>i600</td>
<td>v_fd</td>
<td>rho</td>
<td>d_conc</td>
</tr>
<tr>
<td></td>
<td>uA</td>
<td>V</td>
<td>kOhm/cm</td>
<td>1E12cm^-3</td>
</tr>
<tr>
<td>HPK_VPX36239_002_2-S_HM_EL</td>
<td>80.6</td>
<td>295.3</td>
<td>2.81</td>
<td>4.95</td>
</tr>
<tr>
<td>HPK_VPX36239_002_2-S_HM_ER</td>
<td>89.0</td>
<td>298.8</td>
<td>3.19</td>
<td>4.36</td>
</tr>
<tr>
<td>HPK_VPX36239_002_2-S_HM_WL</td>
<td>99.8</td>
<td>299.3</td>
<td>2.86</td>
<td>4.86</td>
</tr>
<tr>
<td>HPK_VPX36239_002_2-S_HM_EL</td>
<td>80.6</td>
<td>295.3</td>
<td>2.81</td>
<td>4.95</td>
</tr>
<tr>
<td>HPK_VPX36239_002_2-S_HM_ER</td>
<td>89.0</td>
<td>298.8</td>
<td>3.19</td>
<td>4.36</td>
</tr>
<tr>
<td>HPK_VPX36239_002_2-S_HM_WL</td>
<td>99.8</td>
<td>299.3</td>
<td>2.86</td>
<td>4.86</td>
</tr>
</tbody>
</table>

PQC-tables for one Batch

Diode
<table>
<thead>
<tr>
<th>i600</th>
<th>v_fd</th>
<th>rho</th>
<th>d_conc</th>
<th>me-and_meta</th>
<th>vdp_metal</th>
<th>vdp_metal</th>
<th>vdp_cb</th>
<th>vdp_cb_r</th>
<th>t_line_cb</th>
<th>vdpBulk</th>
<th>vdpBulk_r</th>
<th>vdpBulk_rho</th>
</tr>
</thead>
<tbody>
<tr>
<td>uA</td>
<td>V</td>
<td>kOhm/cm</td>
<td>1E12cm^-3</td>
<td>Ohm</td>
<td>mOhm/sq</td>
<td>mOhm/sq</td>
<td>kOhm/sq</td>
<td>kOhm/sq</td>
<td>um</td>
<td>kOhm/sq</td>
<td>kOhm/sq</td>
<td></td>
</tr>
<tr>
<td>HPK_VPX36239_002_2-S_HM_EL</td>
<td>80.6</td>
<td>295.3</td>
<td>2.81</td>
<td>4.95</td>
<td>233.7</td>
<td>19.0</td>
<td>18.6</td>
<td>1.17</td>
<td>1.17</td>
<td>32.0</td>
<td>57.7</td>
<td>57.7</td>
</tr>
<tr>
<td>HPK_VPX36239_002_2-S_HM_ER</td>
<td>89.0</td>
<td>298.8</td>
<td>3.19</td>
<td>4.36</td>
<td>233.4</td>
<td>18.9</td>
<td>18.6</td>
<td>1.17</td>
<td>1.17</td>
<td>33.1</td>
<td>58.1</td>
<td>57.6</td>
</tr>
<tr>
<td>HPK_VPX36239_002_2-S_HM_WL</td>
<td>99.8</td>
<td>299.3</td>
<td>2.86</td>
<td>4.86</td>
<td>240.4</td>
<td>19.3</td>
<td>19.0</td>
<td>1.16</td>
<td>1.16</td>
<td>33.3</td>
<td>57.3</td>
<td>57.5</td>
</tr>
</tbody>
</table>

Poly-Silicon VdP
<table>
<thead>
<tr>
<th>fet</th>
<th>v_fb</th>
<th>c_acc</th>
<th>t_ox</th>
<th>n_ox</th>
<th>vdpPoly</th>
<th>vdpPoly_r</th>
<th>vdpN</th>
<th>vdpN_r</th>
<th>vdpNst</th>
<th>vdpPst</th>
<th>vdpPst_r</th>
<th>cap_f</th>
<th>cap_f_r</th>
</tr>
</thead>
<tbody>
<tr>
<td>V</td>
<td>V</td>
<td>pF</td>
<td>mm</td>
<td>1E10cm^-2</td>
<td>kOhm/sq</td>
<td>kOhm/sq</td>
<td>Ohm/sq</td>
<td>Ohm/sq</td>
<td>kOhm/sq</td>
<td>kOhm/sq</td>
<td>pF</td>
<td>pF</td>
<td></td>
</tr>
<tr>
<td>HPK_VPX36239_002_2-S_HM_EL</td>
<td>80.6</td>
<td>295.3</td>
<td>2.81</td>
<td>4.95</td>
<td>233.7</td>
<td>19.0</td>
<td>18.6</td>
<td>1.17</td>
<td>1.17</td>
<td>32.0</td>
<td>57.7</td>
<td>57.7</td>
<td>2.76</td>
</tr>
<tr>
<td>HPK_VPX36239_002_2-S_HM_ER</td>
<td>89.0</td>
<td>298.8</td>
<td>3.19</td>
<td>4.36</td>
<td>233.4</td>
<td>18.9</td>
<td>18.6</td>
<td>1.17</td>
<td>1.17</td>
<td>33.1</td>
<td>58.1</td>
<td>57.6</td>
<td>2.77</td>
</tr>
<tr>
<td>HPK_VPX36239_002_2-S_HM_WL</td>
<td>99.8</td>
<td>299.3</td>
<td>2.86</td>
<td>4.86</td>
<td>240.4</td>
<td>19.3</td>
<td>19.0</td>
<td>1.16</td>
<td>1.16</td>
<td>33.3</td>
<td>57.3</td>
<td>57.5</td>
<td>2.75</td>
</tr>
</tbody>
</table>

MOS Quarter
i_surf	s0	me-and_poly	lw_n	lw_pstp4	lw_pstp2	v_bd	pA	cm/s	MOhm	um	um	V	
HPK_VPX36239_002_2-S_HM_EL	80.6	295.3	2.81	4.95	233.7	19.0	18.6	1.17	1.17	32.0	57.7	57.7	2.76
HPK_VPX36239_002_2-S_HM_ER	89.0	298.8	3.19	4.36	233.4	18.9	18.6	1.17	1.17	33.1	58.1	57.6	2.77
HPK_VPX36239_002_2-S_HM_WL	99.8	299.3	2.86	4.86	240.4	19.3	19.0	1.16	1.16	33.3	57.3	57.5	2.75

Contact Chain
<table>
<thead>
<tr>
<th>i_surf</th>
<th>s0</th>
<th>gdc05</th>
<th>r_cont_p</th>
<th>r_cont_n</th>
<th>cont_p</th>
<th>cont_p_cont_poly</th>
<th>cont_n</th>
<th>cont_n_cont_poly</th>
</tr>
</thead>
<tbody>
<tr>
<td>HPK_VPX36239_002_2-S_HM_EL</td>
<td>80.6</td>
<td>295.3</td>
<td>2.81</td>
<td>4.95</td>
<td>233.7</td>
<td>19.0</td>
<td>18.6</td>
<td>1.17</td>
</tr>
<tr>
<td>HPK_VPX36239_002_2-S_HM_ER</td>
<td>89.0</td>
<td>298.8</td>
<td>3.19</td>
<td>4.36</td>
<td>233.4</td>
<td>18.9</td>
<td>18.6</td>
<td>1.17</td>
</tr>
<tr>
<td>HPK_VPX36239_002_2-S_HM_WL</td>
<td>99.8</td>
<td>299.3</td>
<td>2.86</td>
<td>4.86</td>
<td>240.4</td>
<td>19.3</td>
<td>19.0</td>
<td>1.16</td>
</tr>
</tbody>
</table>

Median
<table>
<thead>
<tr>
<th>Average</th>
</tr>
</thead>
<tbody>
<tr>
<td>Std dev.</td>
</tr>
<tr>
<td>OK/Tot.</td>
</tr>
<tr>
<td>OK (rel)</td>
</tr>
</tbody>
</table>

Silicon sensor development for HGCal
Maximilian Babeluk
HGCal

- Unprecedented large scale use of silicon detectors in a calorimeter
- Newly developed 8 inch production process
- Last prototype run in September 2021 (if everything goes well)
- Particle flow analysis possible

PQC

- Valuable tool for wide range surveys
- Cross validated by 4 institutes
- Used for production monitoring in the Tracker
- Currently used for prototyping for HGCal, will be used in production phase too
Thank You!