Flavour anomalies in $b \rightarrow s\ell\ell$ decays

A review

Elena Graverini

École Polytechnique Fédérale Lausanne

Joint Annual meeting of the Austrian and Swiss Physical Societies

Innsbruck, August 31, 2021
Standard Model

- **Successful recipe:**
 - 3 generations of quarks + leptons
 - only differing in mass
 - weak, strong & EM force
 - “gauge” bosons: γ, W^\pm, Z^0, g
 - Higgs boson \rightarrow masses

- **Problems!**
 - what is dark matter?
 - origin of flavour structure?
 - origin of neutrino masses?
 - where did antimatter go?

“New Physics” out there?
Standard Model

- **Successful recipe:**
 - 3 generations of quarks + leptons
 - only differing in mass
 - weak, strong & EM force
 - “gauge” bosons: γ, W^\pm, Z^0, g
 - Higgs boson \rightarrow masses

- **Problems!**
 - what is dark matter?
 - origin of *flavour structure*?
 - origin of neutrino masses?
 - where did antimatter go?

“New Physics” out there?
$\mathcal{L}_{SM} = \mathcal{L}_{\text{gauge}} + \mathcal{L}_{\text{Higgs}}$
Under the hood

\[\mathcal{L}_{SM} = \mathcal{L}_{\text{gauge}} + \mathcal{L}_{\text{Higgs}} \]

\[\mathcal{L}_{\text{gauge}} = \sum_{i=1}^{3} \sum_{\psi} \bar{\psi}^i i \gamma \cdot D \psi^i - \frac{1}{4} \left[G^a \cdot G^a + \vec{W} \cdot \vec{W} + B \cdot B \right], \]

with \(\gamma \cdot D = \gamma^\mu D^\mu \) and \(D^\mu = \partial^\mu - i g s T^a G^a_{\mu} - i g T^a W^a_{\mu} - i g' Y B^a_{\mu}. \)

\[\psi^i = Q^i_L, u^i_R, d^i_R, L^i_L, e^i_R; \quad Q^i_L = \begin{pmatrix} u^i_L \\ d^i_L \end{pmatrix}; \quad L^i_L = \begin{pmatrix} \nu^i_L \\ e^i_L \end{pmatrix}. \]
Under the hood

\[\mathcal{L}_{SM} = \mathcal{L}_{gauge} + \mathcal{L}_{Higgs} \]

\[\mathcal{L}_{gauge} = \sum_{i=1}^{3} \sum_{\psi} \bar{\psi}^i i \not{D} \psi^i - \frac{1}{4} \left[G^a \cdot G^a + \vec{W} \cdot \vec{W} + B \cdot B \right], \]

with \(\not{D} = \gamma^\mu D_\mu \) and \(D_\mu = \partial_\mu - ig_s T^a G^a_\mu - ig T^a W^a_\mu - ig' Y B_\mu \).

\[\psi^i = Q^i_L, u^i_R, d^i_R, L^i_L, e^i_R; \quad Q^i_L = \begin{pmatrix} u^i_L \\ d^i_L \end{pmatrix}; \quad L^i_L = \begin{pmatrix} \nu^i_L \\ e^i_L \end{pmatrix}. \]

Fields \(\psi \) exist in 3 copies (families): \(i = 1, 2, 3 \) is the flavour index. Gauge interactions are the same for all families: flavour symmetry.
Under the hood

\[\mathcal{L}_{SM} = \mathcal{L}_{\text{gauge}} + \mathcal{L}_{\text{Higgs}} \]
Under the hood

\[\mathcal{L}_{SM} = \mathcal{L}_{\text{gauge}} + \mathcal{L}_{\text{Higgs}} \]

\[\mathcal{L}_{\text{Higgs}} = \mathcal{L}_H + \mathcal{L}_{\text{Yukawa}} \]

\[\mathcal{L}_H = D_\mu H^\dagger D_\mu H + \frac{\lambda}{4} \left(H^\dagger H - \frac{v^2}{2} \right)^2 \]

\[\mathcal{L}_{\text{Yukawa}} = \bar{Q}_L^i Y_{d}^{ij} d_R^j H + \bar{Q}_L^i Y_{u}^{ij} u_R^j H_c + \bar{L}_L^i Y_{e}^{ij} e_R^j H \]

\[\mathcal{L}_{\text{Yukawa}} \text{ distinguishes} \] the three families.

Flavour physics is the study of different generations of fermions.
Lepton flavour in the Standard Model

Lepton generations differ **only in mass**.

- **Flavour symmetry** of L_{gauge}: amplitudes of processes with e, μ, τ are identical (except phase space effects)

 This is called **Lepton Flavour Universality (LFU)**.

- e.g. the decay $W \to \ell \nu$:

- LFU well established in the decay of light mesons, e.g. $\pi \to \ell \nu, K \to \pi \ell \ell, J/\psi \to \ell \ell$

- **Lepton Flavour (LF)** is conserved (for massless ν): no $\ell_1 \leftrightarrow \ell_2$

 - stringent limits on LF violating decays:

 $\mu \to e\gamma \times, K \to \pi e\mu \times$

 ($\mathcal{B} \lesssim 10^{-13}$) [Eur.Phys.J.C76(2016)8,434]

 ($\mathcal{B} \lesssim 10^{-11}$) [Phys.Rev.D72(2005)012005]

- **LFU or LF** → **unknown physics** not accounted for

 - some SM extensions include particles that can cause LFU and/or LF (e.g. LQ, Z')
Lepton flavour in b decays

- **Charged current decays (CC):** “β decays” of B hadrons.
 - tree level, large $B \sim$ few %
 - strong and weak part factorize \Rightarrow clean SM predictions

- **Neutral current decays (NC):** “penguins” and “boxes”
 - Flavour-Changing Neutral Currents, can only occur in loops: $B \sim 10^{-7} \div 10^{-6}$
 - new particles can enhance SM-suppressed amplitudes
Lepton flavour in b decays

- **Charged current decays (CC):** “β decays” of B hadrons.
 - tree level, large $B \sim$ few %
 - strong and weak part factorize \Rightarrow clean SM predictions
 - hints of LFU in $b \to c\ell\nu$, $\ell = \mu, \tau$

- **Neutral current decays (NC):** “penguins” and “boxes”
 - Flavour-Changing Neutral Currents, can only occur in loops: $B \sim 10^{-7} \div 10^{-6}$
 - new particles can enhance SM-suppressed amplitudes
 - anomalies in $b \to s\ell\ell$ transitions, $\ell = e, \mu$, including 3σ evidence of LFU at LHCb
\(b \rightarrow s\ell\ell \) as a test for the SM

- new physics diagrams can modify measured observables

- model-independent approach: build Fermi-like effective theory with point-like interaction thanks to \(m_b \ll m_W \)

\[
\mathcal{L} \propto \sum_i C_i O_i, \quad C_i = C_i^{\text{SM}} + C_i^{\text{NP}}
\]

“Wilson coefficients”

- SM operators for \(b \rightarrow s\ell^+\ell^- \):

\[
O_7 = \left(\bar{b} \sigma_{\mu\nu} P_R s \right) F^{\mu\nu} \quad \text{(photon, not Fermi-like!)}
\]

\[
O_9 = \left(\bar{b} \gamma_\mu P_L s \right) \left(\bar{\ell} \gamma^\mu \ell \right)
\]

\[
O_{10} = \left(\bar{b} \gamma_\mu P_L s \right) \left(\bar{\ell} \gamma^\mu \gamma^5 \ell \right)
\]
$b \to s\ell\ell$ as a test for the SM

- new physics diagrams can modify measured observables
- model-independent approach: build Fermi-like effective theory with point-like interaction thanks to $m_b \ll m_W$

$$\mathcal{L} \propto \sum_i C_i \mathcal{O}_i, \quad C_i \equiv C_i^{\text{SM}} + C_i^{\text{NP}} \quad \text{“Wilson coefficients”}$$

- SM operators for $b \to s\ell^+\ell^-$:

$$\mathcal{O}_7 = (\bar{b} \sigma_{\mu\nu} P_R s) F^{\mu\nu} \quad \text{(photon, not Fermi-like!)}$$

$$\mathcal{O}_9 = (\bar{b} \gamma_{\mu} P_L s) (\bar{\ell} \gamma^\mu \ell)$$

$$\mathcal{O}_{10} = (\bar{b} \gamma_{\mu} P_L s) (\bar{\ell} \gamma^\mu \gamma^5 \ell)$$
\(b \rightarrow s\ell\ell \) as a test for the SM

- **new physics** diagrams can modify measured observables
- **model-independent** approach: build Fermi-like *effective theory* with point-like interaction thanks to \(m_b \ll m_W \)

\[
\mathcal{L} \propto \sum C_i \mathcal{O}_i, \quad C_i \equiv C_i^{\text{SM}} + C_i^{\text{NP}} \quad \text{“Wilson coefficients”}
\]

- **SM operators** for \(b \rightarrow s\ell^+\ell^- \):

 \[
 \mathcal{O}_7 = (\bar{b} \sigma_{\mu\nu} P_R s) F^{\mu\nu} \quad \text{(photon, not Fermi-like!)}
 \]

 \[
 \mathcal{O}_9 = (\bar{b} \gamma_\mu P_L s) (\bar{\ell} \gamma^\mu \ell)
 \]

 \[
 \mathcal{O}_{10} = (\bar{b} \gamma_\mu P_L s) (\bar{\ell} \gamma^\mu \gamma^5 \ell)
 \]
Over the past decade, LHCb observed a coherent set of tensions with respect to the SM predictions:

1. **Branching Fractions**
 \[B \rightarrow K(\ast)\mu^+\mu^-, B_s \rightarrow \phi\mu^+\mu^-, \Lambda_b \rightarrow \Lambda\mu^+\mu^- \]
 suffer from uncertainties related to the hadronic matrix element

2. **Angular observables**
 \[B \rightarrow K(\ast)\mu^+\mu^-, \Lambda_b \rightarrow \Lambda\mu^+\mu^- \]
 profit from cancellation of most form factors

3. **Ratios of branching fractions involving \(\mu/e \)**
 \[B^0 \rightarrow K^{*0}\ell^+\ell^-, B^+ \rightarrow K^+\ell^+\ell^- \]
 all theoretical uncertainties cancel
$b \rightarrow s\ell\ell$ branching fractions

- exclude $c\bar{c}$ resonances (different physics)
- deficit of decays to muons found in $B^0,+ \rightarrow K^0,+ \mu^+ \mu^-$, $B^0,+ \rightarrow K^{*0},+ \mu^+ \mu^-$, $\Lambda_b^0 \rightarrow \Lambda^0 \mu^+ \mu^-$, $B_s^0 \rightarrow \phi \mu^+ \mu^-$
 - recent result suggests decays to electrons are SM-like
- new analysis of $B_s^0 \rightarrow \phi \mu^+ \mu^-$ in agreement with Run 1, and 3.6σ tension with the SM
$b \rightarrow s\ell\ell$ angular observables

- use angular observables to measure Wilson coefficients
- $B^0 \rightarrow K^{*0} \mu^+ \mu^-$
 - local tension in P'_5 confirmed by 2016 data
 - global tension of 3.3σ with SM
- $B^+ \rightarrow K^{*+} \mu^+ \mu^-$: global 3.1$\sigma$ tension with SM
- $B^+_s \rightarrow \phi \mu^+ \mu^-$ consistent with SM at 1.9σ
- coherent trends pointing at $\text{Re}(\Delta C_9) \approx -1$

\[B^0 \rightarrow K^{*0} \mu^+ \mu^- \]

\[B^0 \rightarrow K^{*0} \mu^+ \mu^- \]

\[B^+ \rightarrow K^{*+} \mu^+ \mu^- \]

\[B^+_s \rightarrow \phi \mu^+ \mu^- \]

\[B^0 \rightarrow K^{*0} \mu^+ \mu^- \]

\[B^+ \rightarrow K^{*+} \mu^+ \mu^- \]

\[B^+_s \rightarrow \phi \mu^+ \mu^- \]

\[B^0 \rightarrow K^{*0} \mu^+ \mu^- \]
Lepton flavour universality tests in $b \to s \ell\ell$

- Ratios of the form

$$R_{Xs} = \frac{\mathcal{B}(B \to X_s \mu^+\mu^-)}{\mathcal{B}(B \to X_s e^+e^-)}$$

are equal to unity in the SM and free from QCD uncertainties that potentially affect BFs and angular observables

\rightarrow e.g. $\mathcal{O}(10^{-4})$ uncertainty on R_K

- up to $\mathcal{O}(1\%)$ QED corrections

\rightarrow extremely powerful tools to look for deviations from the SM!
Electrons vs muons

- while μ^\pm fly through, e^\pm lose energy in the detector
- most e^\pm emit a Bremsstrahlung photon before the magnet → $brem$ recovery
- high occupancy in calorimeter \Rightarrow high L0 thresholds
- e^\pm also suffer from worse PID and tracking efficiency

$B^+ \rightarrow K^+ \mu^+ \mu^-$

$B^+ \rightarrow K^+ e^+ e^-$
\(R_{X_s} \) at LHCb

- the \(X_s \ell^+\ell^- \) final state can also result from a \(B \rightarrow X_s J/\psi \) decay → measure \(R_{X_s} \) in a \(q^2 \) range that excludes \(c\bar{c} \) resonances

- \(B \rightarrow X_s J/\psi \left(\rightarrow \ell^+\ell^- \right) \) share similar topology as \(B \rightarrow X_s \ell^+\ell^- \) → reduce systematics related to \(e/\mu \) differences

- \(R_{X_s} \) is measured as a double ratio:

\[
R_{X_s} \equiv \frac{\mathcal{B}(B \rightarrow X_s \ell^+\ell^-)}{\mathcal{B}(B \rightarrow X_s e^+e^-)} / r_{J/\psi} \\
\equiv \frac{\mathcal{B}(B \rightarrow X_s \ell^+\ell^-)}{\mathcal{B}(B \rightarrow X_s J/\psi \left(\rightarrow \ell^+\ell^- \right))} \frac{\mathcal{B}(B \rightarrow X_s J/\psi \left(\rightarrow e^+e^- \right))}{\mathcal{B}(B \rightarrow X_s e^+e^-)}
\]

- Note: \(J/\psi \rightarrow \ell\ell \) decays are lepton universal (\(r_{J/\psi} = 1_{(SM)} \))
R_K and R_{K^*} results

- All LHCb measurements are below 1:
 - $R_{K^*} = 0.66^{+0.11}_{-0.07} \pm 0.03$ at low q^2 (2.2σ below SM)
 - $R_{K^*} = 0.66^{+0.11}_{-0.07} \pm 0.05$ at central q^2 (2.4σ below SM)
 - **New!** $R_K = 0.846^{+0.044}_{-0.041}$ at central q^2 (3.1σ below SM)

- B factories have less precise but compatible results

- More R_X measurements upcoming with other $b \to s\ell\ell$-mediated decays

\[\text{[LHCb R_{K^*} 3 fb}^{-1}: \text{JHEP08(2017)055]} \quad \text{[LHCb R_K 3 fb}^{-1}: \text{PRL113(2014)151601]} \quad \text{[LHCb 5 fb}^{-1}: \text{PRL122(2019)191801]} \quad \text{[LHCb 9 fb}^{-1}: \text{hep-ex/2103.11769]} \\
\text{[Belle 605 fb}^{-1}: \text{R_{K^*}} (\ast) \quad \text{PRL103(2009)171801}; 711 \text{ fb}^{-1}: \text{hep-ex/1904.02440, R_K}: \text{EPS-HEP 2019]} \quad \text{[BaBar: PRD86(2012)032012]} \]
Flavour anomalies: interpretations

- deviations from τ/μ LU in $b \rightarrow c\ell\nu$ tree decays, combined $\sim 3\sigma$
- deviations from μ/e LU in $b \rightarrow s\ell\ell$ loops, global fit $> 4\sigma$
- no deviations observed in π, K decays nor in EW observables

Anomalies motivate searches for new mediators with enhanced couplings to heavier generations of quarks and leptons

- New mediators could be leptoquarks, Z', ... with mass in LHC reach?
Flavour anomalies: interpretations

- deviations from τ/μ LUs in $b \rightarrow c \ell\nu$ tree decays, combined $\sim 3\sigma$
- deviations from μ/e LUs in $b \rightarrow s \ell\ell$ loops, global fit $> 4\sigma$
- no deviations observed in π, K decays nor in EW observables

Anomalies motivate searches for new mediators with enhanced couplings to heavier generations of quarks and leptons

- New mediators could be leptoquarks, Z', ...

[Complementarity!]

Summary

[Greljo, 2017]
Conclusions and prospects

- Intriguing anomalies in B decays
- Good prospects for resolution in a short time scale
 - New decays being studied
 - Belle II run started, waiting for first results
 - CMS collected $10^{10} B$ decays; measurement systematics orthogonal to LHCb
 - LHCb upgrades will greatly improve sensitivity
- The importance of flavour physics within the experimental strategy in HEP cannot be overestimated!

Angular analyses prospects

- Systematic uncertainties will likely be ≤ 0.01 (many will scale as \sqrt{N})
 - e.g. control angular distribution of the background with data, etc.
- Understanding the angular acceptance will need of large MC samples
- Rescaling the existing measurement with the same binning to 300fb^{-1} with a syst. of 0.01
- We could also reduce binning size to learn more about the shape of the distribution (input on $\frac{d\Gamma}{dq^2}$ to subdivide dataset within the existing bins)

LFU prospects

- For ratios of B's (e.g. R_K, R_{K^*0}) we could reach 1-2% precision
 - For comparison Belle 2 expects to reach a precision of 4-5% with a 50 ab^{-1} dataset
 - Angular analyses with electrons have orthogonal systematics with respect to R_X’s and these can also be kept under control
 - Expect good sensitivity to differences in the angular distributions for electron/muon final states
Swiss involvement in the flavour anomalies

Swiss groups paving the way! See e.g. this year’s SPS/OPG talks:

<table>
<thead>
<tr>
<th>Speaker</th>
<th>Institute</th>
<th>Title</th>
<th>Date/time</th>
</tr>
</thead>
<tbody>
<tr>
<td>E. Graverini</td>
<td>EPFL</td>
<td>Flavour anomalies in $b \to s\ell\ell$ decays: a review</td>
<td>now</td>
</tr>
<tr>
<td>A. Buonaura</td>
<td>UZH</td>
<td>Lepton flavour universality tests in charged-current b-quark decays</td>
<td>31/08 13:45</td>
</tr>
<tr>
<td>A. Crivellin</td>
<td>UZH/PSI</td>
<td>Discovering Lepton Flavour Universality Violating New Physics</td>
<td>31/08 14:00</td>
</tr>
<tr>
<td>D. Lancierini</td>
<td>UZH</td>
<td>On R_K and the global significance of new physics in $b \to s\ell\ell$ decays</td>
<td>31/08 14:15</td>
</tr>
<tr>
<td>M. Atzeni</td>
<td>UZH</td>
<td>A new approach in the search for New Physics in $b \to s\ell^+\ell^-$ decays</td>
<td>31/08 14:30</td>
</tr>
<tr>
<td>Z. Wang</td>
<td>UZH</td>
<td>Angular analysis of $B^0 \to K^{*0}e^+e^-$ decays at LHCb</td>
<td>31/08 14:45</td>
</tr>
<tr>
<td>V. Denysenko</td>
<td>UZH</td>
<td>Test of lepton flavour universality in $B^+ \to K^+\ell^+\ell^-$ decays in high dilepton invariant mass squared region</td>
<td>31/08 15:00</td>
</tr>
<tr>
<td>M. Ferrillo</td>
<td>UZH</td>
<td>Search for New Physics in baryons decay at LHCb</td>
<td>31/08 15:15</td>
</tr>
<tr>
<td>F. Riti</td>
<td>ETH</td>
<td>Search for Lepton Flavour Universality Violation at CMS</td>
<td>31/08 15:30</td>
</tr>
<tr>
<td>L. Schnell</td>
<td>UZH/PSI</td>
<td>Combined Constraints on First Generation Leptoquarks</td>
<td>31/08 16:30</td>
</tr>
<tr>
<td>F. Kirk</td>
<td>UZH/PSI</td>
<td>Global Analysis of Leptophilic Z' Bosons</td>
<td>31/08 16:45</td>
</tr>
<tr>
<td>S. Bouchiba</td>
<td>EPFL</td>
<td>Study of a very rare decay with multiple leptons in the final state at the LHCb experiment</td>
<td>31/08 17:45</td>
</tr>
<tr>
<td>M. Andersson</td>
<td>UZH</td>
<td>Measuring $B(B^0 \to K^{*0}\tau^+\tau^-)$ via the double-loop process $B^0 \to K^{*0}\tau^+\tau^- (\to \mu^+\mu^-)$</td>
<td>31/08 18:30</td>
</tr>
<tr>
<td>P. Owen</td>
<td>UZH</td>
<td>Review of the flavour anomalies at LHCb</td>
<td>02/09 13:30</td>
</tr>
</tbody>
</table>
Spare slides
Electrons vs muons

- while μ^\pm fly through, e^\pm lose energy in the detector
- most e^\pm emit a Bremsstrahlung photon before the magnet
 - degraded momentum resolution
- *bremsstrahlung recovery*:
 - look for γ cluster compatible with initial e^\pm direction ($E_T > 75$ MeV)
 - add cluster energy back to electron and refit track
Electrons vs muons

- high occupancy in calorimeter \implies high L0 thresholds
 - add independently-triggered samples to pool of $e^+ e^-$:
 - **ETOS**: e^\pm from B candidate
 - **HTOS**: K^\pm from B candidate
 - **TIS**: rest of the event
- electrons suffer also from worse PID and tracking efficiency

need to control e/μ differences!
R_K at LHCb

$R_K = 0.846^{+0.042}_{-0.039} \text{(stat)}^{+0.013}_{-0.012} \text{(syst)}$

- main systematics: fit model, size of calibration samples
- p-value in SM hypothesis: $0.0010 \rightarrow 3.1\sigma$ evidence of LFU violation in $B \rightarrow K\ell\ell$ decays
- $R_{K^{*0}} = 0.69^{+0.11}_{-0.07} \text{(stat)} \pm 0.05 \text{(syst)}$ has 2.4–2.5σ significance

[BaBar $0.1 < q^2 < 8.12 \text{ GeV}^2/c^4$ [PRD86032012]]

[Belle $1.0 < q^2 < 6.0 \text{ GeV}^2/c^4$ [JHEP03(2021)105]]

[LHCb 5 fb$^{-1}$ $1.1 < q^2 < 6.0 \text{ GeV}^2/c^4$ [PRL122191801]]

[LHCb 9 fb$^{-1}$ $1.1 < q^2 < 6.0 \text{ GeV}^2/c^4$ [LHCb-PAPER-2021-004]]

[hep-ex:2103.11769]
R_K at LHCb

- $R_K = 0.846^{+0.042}_{-0.039}^{\text{(stat)}}^{+0.013}_{-0.012}^{\text{(syst)}}$
- main systematics: fit model, size of calibration samples
- p-value in SM hypotesys: 0.0010 → 3.1σ evidence of LFU violation in $B \rightarrow K\ell\ell$ decays
- $R_{K^{*0}} = 0.69^{+0.11}_{-0.07}^{\text{(stat)}} \pm 0.05^{\text{(syst)}}$ has 2.4–2.5σ significance