Muonic atom spectroscopy with radioactive targets

Stella Vogiatzi
SPS/ÖPG meeting
02.09.2021

On behalf of the muX collaboration

1 Institute of Nuclear Physics, Polish Academy of Sciences, Krakow, Poland,
2 Paul Scherrer Institut, Villigen, Switzerland,
3 ETH Zürich, Switzerland,
4 Johannes Gutenberg University Mainz, Germany,
5 KU Leuven, Belgium,
6 GSI Helmholtzzentrum für Schwerionenforschung Darmstadt, Germany,
7 Helmholtz Institute Mainz, Germany,
8 Institut für Kernphysik, Universität zu Köln, Germany,
9 LKB Paris, France,
10 University of Groningen, The Netherlands,
11 University of Pisa and INFN, Pisa, Italy,
12 University of Victoria, Canada,
13 Perimeter Institute, Waterloo, Canada,
14 CSNSM, Université Paris Sud, CNRS/IN2P3, Université Paris Saclay, Orsay Campus, France
Muonic atom spectroscopy

- Due to the higher muon mass, there is large overlap of the low-lying muonic states with the nuclear charge distribution.
- The energy of the low-lying muonic levels is highly affected by the nuclear structure details.
- The measurement of the muonic energy levels allows to extract properties of the nucleus such as the charge radius.

muX aims to measure the nuclear charge radius of ^{226}Ra and ^{248}Cm radioactive isotopes.

$E_{1s}(Z = 82) \sim 19 \text{ MeV (point nucleus)}$
$\sim 10.6 \text{ MeV (finite size)}$
Muonic atom spectroscopy

- Due to the higher muon mass, there is large overlap of the low-lying muonic states with the nuclear charge distribution.

- The energy of the low-lying muonic levels is highly affected by the nuclear structure details.

- The measurement of the muonic energy levels allows to extract properties of the nucleus such as the charge radius.

muX aims to measure the nuclear charge radius of 226Ra and 248Cm radioactive isotopes.

$E_{1s}(Z = 82) \sim 19 \text{ MeV (point nucleus)}$

$\sim 10.6 \text{ MeV (finite size)}$
Experimental setup evolution of muX

2015 first test of muonic atom spectroscopy with natural Re, Pb, W
2015 First test of muonic atom spectroscopy with natural Re, Pb, W

2016 Measurement of 185,187Re
Spectroscopic quadrupole moment of 185,187Re

- In 2016, a 500 mg 185,187Re target was measured with two HPGe detectors

- The spectroscopic quadrupole moment describes the effective shape of the nucleus

- 5g-4f transitions are not sensitive to the details of the charge distribution so we can extract the spectroscopic quadrupole moment
Spectroscopic quadrupole moment of $^{185,187}\text{Re}$

- In 2016, a 500 mg $^{185,187}\text{Re}$ target was measured with two HPGe detectors.

- The spectroscopic quadrupole moment describes the effective shape of the nucleus.

- $5g\rightarrow4f$ transitions are not sensitive to the details of the charge distribution so we can extract the spectroscopic quadrupole moment.

Fine splitting

$
\vec{J} = \vec{s} + \vec{l}
$

$5g_{9/2}
5g_{7/2}
4f_{7/2}
4f_{5/2}$
Spectroscopic quadrupole moment of 185,187Re

- In 2016, a 500 mg 185,187Re target was measured with two HPGe detectors.

- The spectroscopic quadrupole moment describes the effective shape of the nucleus.

- $5g$-$4f$ transitions are not sensitive to the details of the charge distribution so we can extract the spectroscopic quadrupole moment.

Theoretical predictions by N. Michel and N. Oreshkina, Max Planck Institute for Nuclear Physics, Heidelberg
Spectroscopic quadrupole moment of 185,187Re

- In 2016, a 500 mg 185,187Re target was measured with two HPGe detectors
- The spectroscopic quadrupole moment describes the effective shape of the nucleus
- $5g$-$4f$ transitions are not sensitive to the details of the charge distribution so we can extract the spectroscopic quadrupole moment

![Spherical Prolate Oblate](image)

Spherical $Q = 0$
Prolate $Q > 0$
Oblate $Q < 0$

5g-4f muonic X-ray spectrum in 185Re

Theoretical predictions by N. Michel and N. Oreshkina, Max Planck Institute for Nuclear Physics, Heidelberg

First physics result!
185Q = 2.07(5) b
187Q = 1.94(5) b

Theoretical predictions by N. Michel and N. Oreshkina, Max Planck Institute for Nuclear Physics, Heidelberg

In 2016, a 500 mg 185,187Re target was measured with two HPGe detectors

The spectroscopic quadrupole moment describes the effective shape of the nucleus

$5g$-$4f$ transitions are not sensitive to the details of the charge distribution so we can extract the spectroscopic quadrupole moment

First physics result!
185Q = 2.07(5) b
187Q = 1.94(5) b

Fine splitting $\vec{J} = \vec{s} + \vec{l}$

Hyperfine splitting $\vec{F} = \vec{I} + \vec{J}$

185Q = 2.07(5) b
187Q = 1.94(5) b
Outlook: charge radius of 185,187Re

- Currently ongoing analysis of the 2p-1s hyperfine transitions in 185,187Re for the extraction of its nuclear charge radius (has not been measured)
- Admixture of ground and excited hyperfine states due to the dynamic effect — very complicated muonic energy spectrum

Master thesis project of Jérémy Layan

2p-1s muonic X-ray spectrum in 185Re

Theoretical calculations by N. Oreshkina, MPI
Outlook: charge radius of 185,187Re

- Currently ongoing analysis of the 2p-1s hyperfine transitions in 185,187Re for the extraction of its nuclear charge radius (has not been measured)
- Admixture of ground and excited hyperfine states due to the dynamic effect — very complicated muonic energy spectrum

Master thesis project of Jérémy Layan

Preliminary fit of the 2p-1s muonic X-ray transitions in 185Re

Theoretical calculations by N. Oreshkina, MPI
Experimental setup evolution of muX

2015 first test of muonic atom spectroscopy with natural Re, Pb, W

2016 measurement of 185,187Re

2017 first measurement with μg targets
Muon transfer to microgram target

… moving to measurement of radioactive targets (mass in μg)…

… technique to transfer muons to μg targets involves a gas cell with H₂/D₂ admixture in 100 bar…

… inspired by the work of Strasser et al. and Kraiman et al…

1. μ⁻ stops in 100 bar of H₂ + 0.1-1.5% D₂ & forms muonic hydrogen μp

2. transfer to deuterium μp → μd

3. μd moves almost freely in the H₂ gas (Ramsauer-Townsend effect [1])

4. transfer to high-Z element μd → μZ when hitting target & emission of X-rays during the atomic cascade

Muon transfer to microgram target

... moving to measurement of radioactive targets (mass in μg)...

... technique to transfer muons to μg targets involves a gas cell with H₂/D₂ admixture in 100 bar...

... inspired by the work of Strasser et al. and Kraiman et al...

1. μ⁻ stops in 100 bar of H₂ + 0.1-1.5% D₂ & forms muonic hydrogen μp

2. transfer to deuterium μp → μd

3. μd moves almost freely in the H₂ gas (Ramsauer-Townsend effect [1])

4. transfer to high-Z element μd → μZ when hitting target & emission of X-rays during the atomic cascade

Muon transfer to microgram target

... moving to measurement of radioactive targets (mass in μg)...

...technique to transfer muons to μg targets involves a gas cell with H₂/D₂ admixture in 100 bar...

...inspired by the work of Strasser et al. and Kraison et al...

1. μ⁻ stops in 100 bar of H₂ + 0.1-1.5% D₂ & forms muonic hydrogen μp

2. transfer to deuterium μp → μd

3. μd moves almost freely in the H₂ gas (Ramsauer-Townsend effect [1])

4. transfer to high-Z element μd → μZ when hitting target & emission of X-rays during the atomic cascade

Muon transfer to microgram target

... moving to measurement of radioactive targets (mass in μg)...

...technique to transfer muons to μg targets involves a gas cell with H₂/D₂ admixture in 100 bar...

...inspired by the work of Strasser et al. and Kaiman et al...

1. μ⁻ stops in 100 bar of H₂ + 0.1-1.5% D₂ & forms muonic hydrogen μp

2. transfer to deuterium μp → μd

3. μd moves almost freely in the H₂ gas (Ramsauer-Townsend effect [1])

4. transfer to high-Z element μd → μZ when hitting target & emission of X-rays during the atomic cascade

Muon transfer to microgram target

… moving to measurement of radioactive targets (mass in μg)…

…technique to transfer muons to μg targets involves a gas cell with H₂/D₂ admixture in 100 bar…

…inspired by the work of Strasser et al. and Kraiman et al…

1. μ⁻ stops in 100 bar of H₂ + 0.1-1.5% D₂ & forms muonic hydrogen μp

2. transfer to deuterium μp → μd

3. μd moves almost freely in the H₂ gas (Ramsauer-Townsend effect [1])

4. transfer to high-Z element μd → μZ when hitting target & emission of X-rays during the atomic cascade

Muon transfer to microgram target

... moving to measurement of radioactive targets (mass in μg)...

...technique to transfer muons to μg targets involves a gas cell with H₂/D₂ admixture in 100 bar...

...inspired by the work of Strasser et al. and Kraman et al...

1. μ⁻ stops in 100 bar of H₂ + 0.1-1.5% D₂ & forms muonic hydrogen μp

2. transfer to deuterium μp → μd

3. μd moves almost freely in the H₂ gas (Ramsauer-Townsend effect [1])

4. transfer to high-Z element μd → μZ when hitting target & emission of X-rays during the atomic cascade

Muon transfer to microgram target

... moving to measurement of radioactive targets (mass in μg)...

... technique to transfer muons to μg targets involves a gas cell with H₂/D₂ admixture in 100 bar...

... inspired by the work of Strasser et al. and Kraiman et al...

1. μ⁻ stops in 100 bar of H₂ + 0.1-1.5% D₂ & forms muonic hydrogen μp

2. transfer to deuterium μp → μd

3. μd moves almost freely in the H₂ gas (Ramsauer-Townsend effect [1])

4. transfer to high-Z element μd → μZ when hitting target & emission of X-rays during the atomic cascade

Muon transfer to microgram target

... moving to measurement of radioactive targets (mass in μg)...

...technique to transfer muons to μg targets involves a gas cell with H₂/D₂ admixture in 100 bar...

...inspired by the work of Strasser et al. and Kraiman et al...

1. μ⁻ stops in 100 bar of H₂ + 0.1-1.5% D₂ & forms muonic hydrogen μp

2. transfer to deuterium μp → μd

3. μd moves almost freely in the H₂ gas (Ramsauer-Townsend effect [1])

4. transfer to high-Z element μd → μZ when hitting target & emission of X-rays during the atomic cascade

muX detectors

The gas cell

The muon and electron counters

Schematics of detector setup

μ-beam

electron veto

gas cell

muon entrance

~30 MeV/c muon beam

μPb X-ray

Pb-208

target

gas cell

muon entrance

HPGe

μZ X-ray

HPGe

The gas cell

The muon and electron counters

Schematics of detector setup

μ-beam

electron veto

gas cell

muon entrance

~30 MeV/c muon beam

μPb X-ray

Pb-208

target

gas cell

muon entrance

HPGe

μZ X-ray
muX detectors

The gas cell

The muon and electron counters

Schematics of detector setup

Demonstration of principal in a 5 µg gold target in 2017, 18.5 h of measurement

Measurement of ^{248}Cm and ^{226}Ra

- In 2019 we measured ^{248}Cm and ^{226}Ra with the Miniball germanium detectors array

- 8 Miniball germanium clusters and 2 standalone germanium detectors making a total of 26 HPGe detectors were operating
Measurement of ^{248}Cm and ^{226}Ra

- We measured 15 μg of ^{248}Cm and 1.4 μg of ^{226}Ra for 6 and 5 days, respectively.
- Targets were produced by the radiochemistry group of the Institute of University of Mainz.
Measurement of 248Cm and 226Ra

- We measured 15 µg of 248Cm and 1.4 µg of 226Ra for 6 and 5 days, respectively.

- Targets were produced by the radiochemistry group of the Institute of University of Mainz.

...2p-1s muonic X-ray spectrum in 248Cm...

![Graph showing the 2p-1s muonic X-ray spectrum in 248Cm with energy on the x-axis and counts on the y-axis.]

Preliminary
• We measured 15 μg of 248Cm and 1.4 μg of 226Ra for 6 and 5 days, respectively

• Targets were produced by the radiochemistry group of the Institute of University of Mainz

...2p-1s muonic X-ray spectrum in 248Cm...

...226Ra spectrum is still being analysed...
Other measurements muX is involved in

- Measurement of rare 2s-1s transitions in medium Z elements to investigate the reach of a possible APV experiment with muonic atoms

 Frederik Wauters, Mainz

- Studies of nuclear γ-lines after ordinary muon capture [1], interesting for nuclear matrix element calculations for double beta-decay processes

 Daniya Zinatulina, Dubna

- Elemental analysis measurements of archaeological artefacts, meteorites, batteries, …

 Alex Amato, μSR group PSI

Outlook & Future plans

- Extraction of the nuclear charge radius of 185Re and 187Re
- Analysis of 248Cm data for the extraction of its nuclear charge radius
- Potentially remeasure 226Ra and other isotopes of interest to the nuclear physics community
Outlook & Future plans

- Extraction of the nuclear charge radius of 185Re and 187Re
- Analysis of 248Cm data for the extraction of its nuclear charge radius
- Potentially remeasure 226Ra and other isotopes of interest to the nuclear physics community

THANK YOU
BACKUP SLIDES
Muonic atom spectroscopy

Atomic capture (direct)
- bombard target with μ^-
- μ^- slow down & is captured @ high principal quantum number $n \sim 14$
 … only possible with ≥ 100 mg targets … radioactive targets are typically restricted to $\sim \mu g$ quantities in the lab

Cascade
- initially dominated by Auger transitions
- below $n \sim 6$, muonic X-rays become the dominant de-excitation mechanism
- the X-rays are detected with Ge detectors

...at the 1s state, the muon either decays or is captured by the atomic nucleus
Atomic parity violation in radium

... why to measure 226Ra?

- Atomic parity violation transitions in atoms probe the low transfer momentum Q region in the running of the $\sin^2(\theta_W)$ plot
- APV is magnified proportionally to $\gtrsim Z^3$
 \Rightarrow heavy atoms are good candidates

Ongoing effort to measure APV in a single Ra$^+$ ion [1]:

- Weak interactions mix states of opposite parity in the Ra ion and enable the APV dipole transition E_{1APV}
 $$E_{1APV} = k \cdot Q_W$$
 k: overlap of nuclear and electronic wave functions
 Q_W: weak charge (related to Weinberg angle)

- Extraction of the Weinberg angle is possible using precise atomic calculations

- The absolute nuclear charge radius of Ra at the level of 0.2% at least is needed

... we also got interested in measuring other radioactive isotopes such as 248Cm ...

Curium & Radium targets 2019

- Radiation protection restrictions at PSI allow for 16 μg of ^{248}Cm and 5.5 μg of ^{226}Ra
- Targets were produced by the radiochemistry group of the Institute of University of Mainz
- Target production is a difficult process

Curium target
- Cm-MP3
 - 15.46 μg
 - uniformly distributed

Radium targets
- Ra-MP1
 - 1.35 μg
 - uniformly distributed
 - rigid

- Ra-MP2
 - 2.50 μg
 - uniformly distributed
 - brittle

- Ra-MP3
 - 4.37 μg
 - ring structure
 - rigid