

SMEFT results in Higgs sector from CMS experiment

Suman Chatterjee for the CMS Collaboration

ÖPG-SPS Meeting 2021 Innsbruck, Austria

H HIM H H

Higgs in SMEFT

- Introduction to effective field theory (EFT) already covered in previous talks
- Can Higgs measurements bring anything new?

Higgs in SMEFT

Gupta, Pomarol, Riva (2014)

- Introduction to effective field theory (EFT) already covered in previous talks
- Can Higgs measurements bring anything new?

A class of dimension-6 operators can only be probed using Higgs field: $\sim H^2 L_{_{SM}}$

$\mathcal{L}_6^{(2)}-H^6$		
$Q_H = (H^{\dagger}H)^3$		
$\mathcal{L}_6^{(3)}$ – H^4D^2		
$Q_{H\Box}$ $(H^{\dagger}H)\Box(H^{\dagger}H)$		

$\mathcal{L}_6^{(4)}-X^2H^2$		
Q_{HG}	$H^{\dagger}HG^{a}_{\mu\nu}G^{a\mu\nu}$	
$Q_{H\widetilde{G}}$	$H^{\dagger}H\widetilde{G}^{a}_{\mu u}G^{a\mu u}$	
Q_{HW}	$H^{\dagger}HW^{i}_{\mu u}W^{I\mu u}$	
$Q_{H\widetilde{W}}$	$H^{\dagger}H\widetilde{W}^{i}_{\mu\nu}W^{i\mu\nu}$	
Q_{HB}	$H^\dagger H B_{\mu u} B^{\mu u}$	
$Q_{H\widetilde{B}}$	$H^\dagger H\widetilde{B}_{\mu u}B^{\mu u}$	

	$\mathcal{L}_6^{(5)}$ – $\psi^2 H^3$	
Q_{eH}	$(H^{\dagger}H)(\bar{l}_{p}e_{r}H)$	Brivio (2020)
Q_{uH}	$(H^{\dagger}H)(\bar{q}_p u_r \tilde{H})$	Operators written in
Q_{dH}	$(H^{\dagger}H)(\bar{q}_p d_r H)$	Warsaw basis [Grzadkowski et al. (2010)]

Higgs in SMEFT

Gupta, Pomarol, Riva (2014)

- Introduction to effective field theory (EFT) already covered in previous talks
- Can Higgs measurements bring anything new?

A class of dimension-6 operators can only be probed using Higgs field: $\sim H^2 L_{_{SM}}$

$\mathcal{L}_6^{(2)}-H^6$		
$Q_H = (H^\dagger H)^3$		
${\cal L}_6^{(3)} - H^4 D^2$		
$Q_{H\square}$	$(H^\dagger H)\Box(H^\dagger H)$	

$\mathcal{L}_6^{(4)}-X^2H^2$		
Q_{HG}	$H^{\dagger}HG^{a}_{\mu\nu}G^{a\mu\nu}$	
$Q_{H\widetilde{G}}$	$H^{\dagger}H\widetilde{G}^{a}_{\mu\nu}G^{a\mu\nu}$	
Q_{HW}	$H^\dagger H W^i_{\mu\nu} W^{I\mu\nu}$	
$Q_{H\widetilde{W}}$	$H^{\dagger}H\widetilde{W}_{\mu\nu}^{i}W^{i\mu\nu}$	
Q_{HB}	$H^\dagger H B_{\mu u} B^{\mu u}$	
$Q_{H\widetilde{B}}$	$H^\dagger H \widetilde{B}_{\mu u} B^{\mu u}$	

Synergy with top & electroweak measurements strengthens pinning down other operators too (& symmetry assumptions)

Ellis et al. (2020)

4

Pathways to probe EFT operators

Reinterpretation of existing measurements

- Use unfolded/detector-level distributions of observables in SM measurements
- Parameterize σ in terms of Wilson coefficients (WCs)
- Extract bounds on WC

Pathways to probe EFT operators

Reinterpretation of existing measurements

Dedicated EFT measurements

- Use unfolded/detector-level distributions of observables in SM measurements
- Parameterize σ in terms of Wilson coefficients (WCs)
- Extract bounds on WC

- Identify processes sensitive to particular set of WCs
- Simulate events with EFT hypotheses
- Perform direct measurements in terms of WC

Pathways to probe EFT operators

Reinterpretation of existing measurements

Easy to combine different measurements

Doesn't take into account acceptance effects due to EFT operators

Observables already fixed → May miss subtle EFT effects

Can design object & event selection conditions depending on EFT operators

Construct dedicated observables sensitive to particular operators

Can be non-trivial to combine with other measurements

CMS-PAS-HIG-19-005

arXiv: 2104.12152

(Accepted by PRD for publication)

CMS-PAS-HIG-19-005

Input data for EFT analysis

Analysis	Decay tags	Production tags	Luminosity (fb ⁻¹)
$ ext{H} ightarrow \gamma \gamma$	$\gamma\gamma$	ggH, $p_{\rm T}({\rm H}) \times {\rm N}$ -jet bins VBF, $p_{\rm T}({\rm H}\ jj)$ bins	77.4
	<u> </u>	ttH	35.9, 41.5
$H o ZZ^{(*)} o 4\ell$	4 2.2/224	ggH, $p_T(H) \times N$ -jet bins VBF, m_{jj} bins	127
$H \to ZZ^{(1)} \to 4\ell$	4μ, 2e2μ/2μ2e, 4e	VH lantonic	137
		VH leptonic, $p_T(V)$ bins ttH	
	еµ/µе	$ggH \le 2$ -jets VBF	
$H \to WW^{(*)} \to \ell \nu \ell \nu$	ee+μμ	$ggH \le 1$ -jet	35.9
$H \to VV VV \to \ell \nu \ell \nu$	eµ+jj	VH hadronic	33.9
	3ℓ	WH leptonic	
	4ℓ	ZH leptonic	
		ggH, $p_T(H) \times N$ -jet bins	
${ m H} ightarrow au au$		VH hadronic	77.4
11 -/ 11	$e\mu$, $e\tau_h$, $\mu\tau_h$, $\tau_h\tau_h$	VBF	
		VH, high- $p_{\rm T}({ m V})$	35.9
	$W(\ell\nu)H(bb)$	WH leptonic	35.9, 41.5
$H\tobb$	$Z(\nu\nu)H(bb), Z(\ell\ell)H(bb)$	ZH leptonic	00.7, 11.0
11 -7 00	bb	ttH , $t\bar{t} \to 0$, 1, $2\ell + jets$	77.4
		ggH, high- $p_T(H)$ bins	35.9
ttH production	2ℓ ss, 3ℓ , 4ℓ ,	ttH	35.9, 41.5
with $H \rightarrow leptons$	$1\ell+2\tau_{\rm h}$, $2\ell ss+1\tau_{\rm h}$, $3\ell+1\tau_{\rm h}$	ttii	55.9, 41.5

CMS-PAS-HIG-19-005

Input data for EFT analysis

	Analysis	Decay tags	Production tags	Luminosity (fb ⁻¹)
	$ ext{H} ightarrow \gamma \gamma$	γγ	ggH, $p_{\rm T}({\rm H}) \times {\rm N}$ -jet bins VBF, $p_{\rm T}({\rm H}~jj)$ bins	77.4
	, ,	, ,	ttH	35.9, 41.5
•	$H \to ZZ^{(*)} \to 4\ell$	4μ, 2e2μ/2μ2e, 4e	ggH, $p_T(H) \times N$ -jet bins VBF, m_{jj} bins VH hadronic VH leptonic, $p_T(V)$ bins ttH	137
	$H \to WW^{(*)} \to \ell \nu \ell \nu$	eμ/μe ee+μμ eμ+jj 3ℓ 4ℓ	$ggH \le 2$ -jets VBF $ggH \le 1$ -jet VH hadronic WH leptonic ZH leptonic	35.9
Z*) _	$\mathrm{H} \rightarrow \tau\tau$	$e\mu,e au_h,\mu au_h, au_h au_h$	ggH, $p_T(H) \times N$ -jet bins VH hadronic VBF VH, high- $p_T(V)$	77.4 35.9
	H o bb	$W(\ell\nu)H(bb) \ Z(\nu\nu)H(bb), Z(\ell\ell)H(bb)$	WH leptonic ZH leptonic	35.9, 41.5
	11 -7 00	bb	ttH, $t\bar{t} \rightarrow 0$, 1, $2\ell + \text{jets}$ ggH, high- $p_T(H)$ bins	77.4 35.9
•	$\begin{array}{c} \text{ttH production} \\ \text{with } H \rightarrow \text{leptons} \end{array}$	$\begin{array}{c} 2\ell ss, 3\ell, 4\ell, \\ 1\ell + 2\tau_h, 2\ell ss + 1\tau_h, 3\ell + 1\tau_h \end{array}$	ttH	35.9, 41.5

CMS-PAS-HIG-19-005

HEL Parameters	Definition
$c_A \times 10^4$	$c_A = rac{m_W^2}{g'^2} rac{f_A}{\Lambda^2}$ f \leftarrow Wilson coefficient
$c_G \times 10^5$	$c_G = \frac{m_W^2}{g_s^2} \frac{f_G}{\Lambda^2}$
$c_u \times 10$	$c_u = -v^2 \frac{f_u}{\Lambda^2}$
$c_d \times 10$	$c_d = -v^2 \frac{f_d}{\Lambda^2}$
$c_{\ell} \times 10$	$c_\ell = -v^2 rac{f_\ell}{\Lambda^2}$
$c_{HW} \times 10^2$	$c_{HW} = \frac{m_W^2}{2g} \frac{f_{HW}}{\Lambda^2}$
$(c_{WW} - c_B) \times 10^2$	$c_{WW} = \frac{m_W^2}{g} \frac{f_{WW}}{\Lambda^2}, c_B = \frac{2m_W^2}{g'} \frac{f_B}{\Lambda^2}$

Alloul, Fuks, Sanz (2013)

10

 $(c_{ww} + c_{B}) \leftarrow \text{constrained to 0 by EWPD}$

CMS-PAS-HIG-19-005

Two bounds reported for each WC:

- 1. Putting all other WCs to $0 \rightarrow$ generally results to stronger bound
- 2. Profiling other WCs \rightarrow gives a sense of correlation between operators

CMS-PAS-HIG-19-005

Two bounds reported for each WC:

- 1. Putting all other WCs to $0 \rightarrow$ generally results to stronger bound
- 2. Profiling other WCs \rightarrow gives a sense of correlation between operators

Large correlation between operators affecting H-V coupling Significant correlation between c_G and many other WCs $_{12}$ (increase in rate due to production and decay width can not be separated)

arXiv: 2104.12152

Probing

4 HZZ couplings (HWW couplings related by symmetry)

- 2 Hgg couplings (1 CP-even + 1 CP-odd)
- 2 Htt couplings (1 CP-even + 1 CP-odd)

$$\begin{split} A(\mathrm{HV_1V_2}) &= \frac{1}{v} \left[a_1^{\mathrm{VV}} + \frac{\kappa_1^{\mathrm{VV}} q_{\mathrm{V1}}^2 + \kappa_2^{\mathrm{VV}} q_{\mathrm{V2}}^2}{\left(\Lambda_1^{\mathrm{VV}}\right)^2} + \frac{\kappa_3^{\mathrm{VV}} (q_{\mathrm{V1}} + q_{\mathrm{V2}})^2}{\left(\Lambda_Q^{\mathrm{VV}}\right)^2} \right] m_{\mathrm{V1}}^2 \epsilon_{\mathrm{V1}}^* \epsilon_{\mathrm{V2}}^* \\ &+ \frac{1}{v} a_2^{\mathrm{VV}} f_{\mu\nu}^{*(1)} f^{*(2),\mu\nu} + \frac{1}{v} a_3^{\mathrm{VV}} f_{\mu\nu}^{*(1)} \tilde{f}^{*(2),\mu\nu}, \end{split}$$

$$A(\mathrm{Hff}) = -\frac{m_{\mathrm{f}}}{v} \overline{\psi}_{\mathrm{f}} \left(\kappa_{\mathrm{f}} + \mathrm{i} \tilde{\kappa}_{\mathrm{f}} \gamma_{5} \right) \psi_{\mathrm{f}} \qquad \mathrm{SM:} \ \mathrm{a_{1}^{WW}} = \mathrm{a_{1}^{ZZ}} = 2, \ \kappa_{\mathrm{f}} = 1, \ \mathrm{others} \ 0$$

SM:
$$a_1^{WW} = a_1^{ZZ} = 2$$
, $\kappa_f = 1$, others 0

$$f^{(i)\mu\nu} = \epsilon^{\mu}_{\mathrm{V}i} q^{\nu}_{\mathrm{V}i} - \epsilon^{\nu}_{\mathrm{V}i} q^{\mu}_{\mathrm{V}i}, \, \tilde{f}^{(i)}_{\mu\nu} = \frac{1}{2} \epsilon_{\mu\nu\rho\sigma} f^{(i),\rho\sigma}$$

arXiv: 2104.12152

Probing

4 HZZ couplings (HWW couplings related by symmetry)

- 2 Hgg couplings (1 CP-even + 1 CP-odd)
- 2 Htt couplings (1 CP-even + 1 CP-odd)

$$\begin{split} A(\mathrm{HV_1V_2}) &= \frac{1}{v} \left[a_1^{\mathrm{VV}} + \frac{\kappa_1^{\mathrm{VV}} q_{\mathrm{V1}}^2 + \kappa_2^{\mathrm{VV}} q_{\mathrm{V2}}^2}{\left(\Lambda_1^{\mathrm{VV}}\right)^2} + \frac{\kappa_3^{\mathrm{VV}} (q_{\mathrm{V1}} + q_{\mathrm{V2}})^2}{\left(\Lambda_Q^{\mathrm{VV}}\right)^2} \right] m_{\mathrm{V1}}^2 \epsilon_{\mathrm{V1}}^* \epsilon_{\mathrm{V2}}^* \\ &\quad + \frac{1}{v} a_2^{\mathrm{VV}} f_{\mu\nu}^{*(1)} f^{*(2),\mu\nu} + \frac{1}{v} a_3^{\mathrm{VV}} f_{\mu\nu}^{*(1)} \tilde{f}^{*(2),\mu\nu}, \end{split}$$

$$A(\mathrm{Hff}) = -\frac{m_{\mathrm{f}}}{v} \overline{\psi}_{\mathrm{f}} \left(\kappa_{\mathrm{f}} + \mathrm{i} \tilde{\kappa}_{\mathrm{f}} \gamma_{5}\right) \psi_{\mathrm{f}} \qquad \mathrm{SM:} \ \mathrm{a_{1}^{WW}} = \mathrm{a_{1}^{ZZ}} = 2, \ \kappa_{\mathrm{f}} = 1, \ \mathrm{others} \ 0$$

SM:
$$a_1^{WW} = a_1^{ZZ} = 2$$
, $\kappa_f = 1$, others 0

$$a_{1}^{gg} = K_{1}^{gg} = K_{2}^{gg} = 0$$

$$a_{1}^{YY} = K_{1}^{YY} = K_{2}^{YY} = 0$$

$$K_{1}^{ZZ} = K_{2}^{ZZ}$$

$$K_{1}^{WW} = K_{2}^{WW}$$

$$K_{3}^{VV} = 0$$

Requirements of Gauge invariance

$$f^{(i)\mu\nu} = \epsilon^{\mu}_{\mathrm{V}i}q^{\nu}_{\mathrm{V}i} - \epsilon^{\nu}_{\mathrm{V}i}q^{\mu}_{\mathrm{V}i}, \, \tilde{f}^{(i)}_{\mu\nu} = \frac{1}{2}\epsilon_{\mu\nu\rho\sigma}f^{(i),\rho\sigma}$$

arXiv: 2104.12152

Probing

4 HZZ couplings (HWW couplings related by symmetry)

- 2 Hgg couplings (1 CP-even + 1 CP-odd)
- 2 Htt couplings (1 CP-even + 1 CP-odd)

$$\begin{split} A(\mathrm{HV_1V_2}) &= \frac{1}{v} \left[a_1^{\mathrm{VV}} + \frac{\kappa_1^{\mathrm{VV}} q_{\mathrm{V1}}^2 + \kappa_2^{\mathrm{VV}} q_{\mathrm{V2}}^2}{\left(\Lambda_1^{\mathrm{VV}}\right)^2} + \frac{\kappa_3^{\mathrm{VV}} (q_{\mathrm{V1}} + q_{\mathrm{V2}})^2}{\left(\Lambda_Q^{\mathrm{VV}}\right)^2} \right] m_{\mathrm{V1}}^2 \epsilon_{\mathrm{V1}}^* \epsilon_{\mathrm{V2}}^* \\ &\quad + \frac{1}{v} a_2^{\mathrm{VV}} f_{\mu\nu}^{*(1)} f^{*(2),\mu\nu} + \frac{1}{v} a_3^{\mathrm{VV}} f_{\mu\nu}^{*(1)} \tilde{f}^{*(2),\mu\nu}, \end{split}$$

$$A(\mathrm{Hff}) = -\frac{m_{\mathrm{f}}}{v} \overline{\psi}_{\mathrm{f}} \left(\kappa_{\mathrm{f}} + \mathrm{i} \tilde{\kappa}_{\mathrm{f}} \gamma_{5}\right) \psi_{\mathrm{f}} \qquad \mathrm{SM:} \ \mathrm{a_{1}^{\ WW}} = \mathrm{a_{1}^{\ ZZ}} = 2, \ \kappa_{\mathrm{f}} = 1, \ \mathrm{others} \ 0$$

SM:
$$a_1^{WW} = a_1^{ZZ} = 2$$
, $\kappa_f = 1$, others 0

Production mechanisms included:

arXiv: 2104.12152

Probing

4 HZZ couplings (HWW couplings related by symmetry)

- 2 Hgg couplings (1 CP-even + 1 CP-odd)
- 2 Htt couplings (1 CP-even + 1 CP-odd)

$$\begin{split} A(\mathrm{HV_1V_2}) &= \frac{1}{v} \left[a_1^{\mathrm{VV}} + \frac{\kappa_1^{\mathrm{VV}} q_{\mathrm{V1}}^2 + \kappa_2^{\mathrm{VV}} q_{\mathrm{V2}}^2}{\left(\Lambda_1^{\mathrm{VV}}\right)^2} + \frac{\kappa_3^{\mathrm{VV}} (q_{\mathrm{V1}} + q_{\mathrm{V2}})^2}{\left(\Lambda_Q^{\mathrm{VV}}\right)^2} \right] m_{\mathrm{V1}}^2 \epsilon_{\mathrm{V1}}^* \epsilon_{\mathrm{V2}}^* \\ &+ \frac{1}{v} a_2^{\mathrm{VV}} f_{\mu\nu}^{*(1)} f^{*(2),\mu\nu} + \frac{1}{v} a_3^{\mathrm{VV}} f_{\mu\nu}^{*(1)} \tilde{f}^{*(2),\mu\nu}, \end{split}$$

$$A(\mathrm{Hff}) = -\frac{m_{\mathrm{f}}}{v} \overline{\psi}_{\mathrm{f}} \left(\kappa_{\mathrm{f}} + \mathrm{i} \tilde{\kappa}_{\mathrm{f}} \gamma_{5}\right) \psi_{\mathrm{f}} \qquad \mathrm{SM:} \ \mathrm{a_{1}^{WW}} = \mathrm{a_{1}^{ZZ}} = 2, \ \kappa_{\mathrm{f}} = 1, \ \mathrm{others} \ 0$$

SM:
$$a_1^{WW} = a_1^{ZZ} = 2$$
, $\kappa_f = 1$, others 0

Production mechanisms included:

Method

Matrix element likelihood estimator (MELA) used to build discriminants sensitive to individual anomalous coupling including CP-sensitive observables

BDT used to separate CP-even & CP-odd Htt couplings

Exploiting maximum information from event kinematics

arXiv: 2104.12152

Probing

4 HZZ couplings (HWW couplings related by symmetry)

- 2 Hgg couplings (1 CP-even + 1 CP-odd)
- 2 Htt couplings (1 CP-even + 1 CP-odd)

$$\begin{split} A(\mathrm{HV_1V_2}) &= \frac{1}{v} \left[a_1^{\mathrm{VV}} + \frac{\kappa_1^{\mathrm{VV}} q_{\mathrm{V1}}^2 + \kappa_2^{\mathrm{VV}} q_{\mathrm{V2}}^2}{\left(\Lambda_1^{\mathrm{VV}}\right)^2} + \frac{\kappa_3^{\mathrm{VV}} (q_{\mathrm{V1}} + q_{\mathrm{V2}})^2}{\left(\Lambda_Q^{\mathrm{VV}}\right)^2} \right] m_{\mathrm{V1}}^2 \epsilon_{\mathrm{V1}}^* \epsilon_{\mathrm{V2}}^* \\ &+ \frac{1}{v} a_2^{\mathrm{VV}} f_{\mu\nu}^{*(1)} f^{*(2),\mu\nu} + \frac{1}{v} a_3^{\mathrm{VV}} f_{\mu\nu}^{*(1)} \tilde{f}^{*(2),\mu\nu}, \end{split}$$

$$A(\mathrm{Hff}) = -\frac{m_{\mathrm{f}}}{v} \overline{\psi}_{\mathrm{f}} \left(\kappa_{\mathrm{f}} + \mathrm{i} \tilde{\kappa}_{\mathrm{f}} \gamma_{5}\right) \psi_{\mathrm{f}} \qquad \mathrm{SM:} \ \mathrm{a_{1}^{WW}} = \mathrm{a_{1}^{ZZ}} = 2, \ \kappa_{\mathrm{f}} = 1, \ \mathrm{others} \ 0$$

SM:
$$a_1^{WW} = a_1^{ZZ} = 2$$
, $\kappa_f = 1$, others 0

Production mechanisms included:

Method

Matrix element likelihood estimator (MELA) used to build discriminants sensitive to individual anomalous coupling including CP-sensitive observables

Exploiting maximum information from event kinematics

BDT used to separate CP-even & CP-odd Htt couplings

EFT Results

Reported in Higgs basis under SU(2)xU(1) symmetry \rightarrow translated into Warsaw basis

arXiv: 2104.12152

Results from ttH+tH categories

Sensitivity to fermionic couplings parameterized in terms of

$$\sigma/\sigma_{_{\mathrm{SM}}} \& \qquad f_{\mathrm{CP}}^{\mathrm{Hff}} = \frac{|\tilde{\kappa}_{\mathrm{f}}|^2}{|\kappa_{\mathrm{f}}|^2 + |\tilde{\kappa}_{\mathrm{f}}|^2} \operatorname{sign}\left(\frac{\tilde{\kappa}_{\mathrm{f}}}{\kappa_{\mathrm{f}}}\right)$$

Results combined with $ttH(\rightarrow \gamma\gamma)$

→ Significant improvement in sensitivity

H-t coupling

arXiv: 2104.12152

Results from ttH+tH categories

H-t coupling

Sensitivity to fermionic couplings parameterized in terms of

$$\sigma/\sigma_{_{SM}} \& \qquad f_{\mathrm{CP}}^{\mathrm{Hff}} = \frac{|\tilde{\kappa}_{\mathrm{f}}|^2}{|\kappa_{\mathrm{f}}|^2 + |\tilde{\kappa}_{\mathrm{f}}|^2} \operatorname{sign}\left(\frac{\tilde{\kappa}_{\mathrm{f}}}{\kappa_{\mathrm{f}}}\right)$$

Results combined with $ttH(\rightarrow \gamma\gamma)$

→ Significant improvement in sensitivity

Data consistent with SM prediction

Measuring only yield $(\kappa_t^2 + \widetilde{\kappa}_t^2)$ produces a ring in 2-D scan of log-likelihood

← CP-sensitive measurement resolves regions within ring

arXiv: 2104.12152

Sensitivity to bosonic couplings parameterized in terms of

$$\sigma/\sigma_{SM} \& f_{a3}^{ggH} = \frac{|a_3^{gg}|^2}{|a_2^{gg}|^2 + |a_3^{gg}|^2} \operatorname{sign}\left(\frac{a_3^{gg}}{a_2^{gg}}\right)$$

Anomalous couplings expressed in terms of WC in Higgs basis

$$c_{\mathrm{gg}} = -rac{1}{2\pilpha_{\mathrm{S}}}a_{2}^{\mathrm{gg}},$$
 $ilde{c}_{\mathrm{gg}} = -rac{1}{2\pilpha_{\mathrm{S}}}a_{3}^{\mathrm{gg}},$

Data consistent with SM prediction

Small sensitivity worsens resolution within ring

Sensitivity to bosonic couplings parameterized in terms of

$$\sigma/\sigma_{SM} & f_{ai}^{VV} = \frac{|a_i^{VV}|^2 \alpha_{ii}^{(2e2\mu)}}{\sum_j |a_j^{VV}|^2 \alpha_{jj}^{(2e2\mu)}} \operatorname{sign}\left(\frac{a_i^{VV}}{a_1}\right)$$

Anomalous couplings expressed in terms of WC in Higgs basis

$$c_{zz} = -\frac{s_{w}^{2} c_{w}^{2}}{2\pi \alpha} a_{2},$$
 $\tilde{c}_{zz} = -\frac{s_{w}^{2} c_{w}^{2}}{2\pi \alpha} a_{3}.$

Data consistent with SM prediction

Correlation with other WCs washes out the ring

Conclusion & Outlook

- Area of EFT measurements emerging as a new center of attention
- Increasing interest by both communities: theory & experiment
- Still a number of places to reach consensus upon

Impact of NLO QCD &/ EW corrections in EFT fit

Inclusion of quadratic terms in EFT fit

Impact of dimension-8 operators

+ ...

- LHC provides an unique opportunity of EFT measurements in Higgs sector (along with other sectors)
- Follow the latest happenings in LHC EFT working group

Conclusion & Outlook

- Area of EFT measurements emerging as a new center of attention
- Increasing interest by both communities: theory & experiment
- Still a number of places to reach consensus upon

Impact of NLO QCD &/ EW corrections in EFT fit

Inclusion of quadratic terms in EFT fit

Impact of dimension-8 operators

+ ...

- LHC provides an unique opportunity of EFT measurements in Higgs sector (along with other sectors)
- Follow the latest happenings in LHC EFT working group

Extra material

Two bounds reported for each WC:

- 1. With putting all other WCs to $0 \rightarrow$ generally results to stronger bound
- 2. Profiling other WCs \rightarrow gives a sense of correlation between operators

Not sensitive to sign of 'Yukawa-like' operators

Two bounds reported for each WC:

- 1. With putting all other WCs to $0 \rightarrow$ generally results to stronger bound
- 2. Profiling other WCs \rightarrow gives a sense of correlation between operators

Not sensitive to sign of 'Yukawa-like' operators

Including bbH measurements can help to alleviate sign ambiguity for c_d

Measurement of anomalous couplings in $H \rightarrow 4$ leptons

Probing

Up to 5 HZZ couplings 2 Hgg couplings (1 CP-even + 1 CP-odd) 2 Htt couplings (1 CP-even + 1 CP-odd)

$$\begin{split} A(\mathrm{HV_1V_2}) &= \frac{1}{v} \left[a_1^{\mathrm{VV}} + \frac{\kappa_1^{\mathrm{VV}} q_{\mathrm{V1}}^2 + \kappa_2^{\mathrm{VV}} q_{\mathrm{V2}}^2}{\left(\Lambda_1^{\mathrm{VV}}\right)^2} + \frac{\kappa_3^{\mathrm{VV}} (q_{\mathrm{V1}} + q_{\mathrm{V2}})^2}{\left(\Lambda_Q^{\mathrm{VV}}\right)^2} \right] m_{\mathrm{V1}}^2 \epsilon_{\mathrm{V1}}^* \epsilon_{\mathrm{V2}}^* \\ &\quad + \frac{1}{v} a_2^{\mathrm{VV}} f_{\mu\nu}^{*(1)} f^{*(2),\mu\nu} + \frac{1}{v} a_3^{\mathrm{VV}} f_{\mu\nu}^{*(1)} \tilde{f}^{*(2),\mu\nu}, \end{split}$$

$$A(Hff) = -\frac{m_f}{v}\overline{\psi}_f (\kappa_f + i\tilde{\kappa}_f\gamma_5) \psi_{f'}$$

$$a_1^{gg} = \kappa_1^{gg} = \kappa_2^{gg} = 0$$

$$a_1^{YY} = \kappa_1^{YY} = \kappa_2^{YY} = 0$$

$$\kappa_1^{ZZ} = \kappa_2^{ZZ}$$

$$\kappa_1^{WW} = \kappa_2^{WW}$$

$$\kappa_1^{VV} = 0$$

Requirements of Gauge invariance

SU(2)xU(1) symmetry/relates
W, Z couplings

<u>Production mechanisms included:</u>

$$\begin{split} a_1^{\text{WW}} &= a_1^{ZZ} + \frac{\Delta m_{\text{W}}}{m_{\text{W}}}, \\ a_2^{\text{WW}} &= c_{\text{w}}^2 a_2^{ZZ} + s_{\text{w}}^2 a_2^{\gamma\gamma} + 2 s_{\text{w}} c_{\text{w}} a_2^{Z\gamma}, \\ a_3^{\text{WW}} &= c_{\text{w}}^2 a_3^{ZZ} + s_{\text{w}}^2 a_3^{\gamma\gamma} + 2 s_{\text{w}} c_{\text{w}} a_3^{Z\gamma}, \\ \frac{\kappa_1^{\text{WW}}}{(\Lambda_1^{\text{WW}})^2} (c_{\text{w}}^2 - s_{\text{w}}^2) &= \frac{\kappa_1^{ZZ}}{(\Lambda_1^{ZZ})^2} + 2 s_{\text{w}}^2 \frac{a_2^{\gamma\gamma} - a_2^{ZZ}}{m_Z^2} + 2 \frac{s_{\text{w}}}{c_{\text{w}}} (c_{\text{w}}^2 - s_{\text{w}}^2) \frac{a_2^{Z\gamma}}{m_Z^2}, \\ \frac{\kappa_2^{Z\gamma}}{(\Lambda_1^{Z\gamma})^2} (c_{\text{w}}^2 - s_{\text{w}}^2) &= 2 s_{\text{w}} c_{\text{w}} \left(\frac{\kappa_1^{ZZ}}{(\Lambda_1^{ZZ})^2} + \frac{a_2^{\gamma\gamma} - a_2^{ZZ}}{m_Z^2} \right) + 2 (c_{\text{w}}^2 - s_{\text{w}}^2) \frac{a_2^{Z\gamma}}{m_Z^2}, \end{split}$$

arXiv: 2104.12152

Measurement of anomalous couplings in $H \rightarrow 4$ leptons

Sensitivity to fermionic couplings parameterized in terms of

$$f_{\text{CP}}^{\text{Hff}} = \frac{|\tilde{\kappa}_{\text{f}}|^2}{|\kappa_{\text{f}}|^2 + |\tilde{\kappa}_{\text{f}}|^2} \operatorname{sign}\left(\frac{\tilde{\kappa}_{\text{f}}}{\kappa_{\text{f}}}\right)$$

$$\sigma(\tilde{\kappa}_{\text{f}} = 1) / \sigma(\kappa_{\text{f}} = 1) \qquad 2.38 \text{ for ggH}$$

$$0.39 \text{ for ttH}$$

$$6.08 \text{ for } f_{\text{CP}}^{\text{ttH}} = 1 \text{ w.r.t. } f_{\text{CP}}^{\text{ttH}} = 0 \text{ (SM)}$$

Measurement of anomalous couplings in $H \rightarrow 4$ leptons

Sensitivity to bosonic couplings parameterized in terms of

$$f_{ai}^{\text{VV}} = \frac{|a_i^{\text{VV}}|^2 \alpha_{ii}^{(2\text{e}2\mu)}}{\sum_j |a_j^{\text{VV}}|^2 \alpha_{jj}^{(2\text{e}2\mu)}} \operatorname{sign}\left(\frac{a_i^{\text{VV}}}{a_1}\right)$$

Anomalous couplings expressed in terms of WC in Higgs basis

 C_{zz}

$$c_{\mathrm{zz}} = -rac{s_{\mathrm{w}}^2 c_{\mathrm{w}}^2}{2\pi lpha} a_2,$$
 $ilde{c}_{\mathrm{zz}} = -rac{s_{\mathrm{w}}^2 c_{\mathrm{w}}^2}{2\pi lpha} a_3.$

Data consistent with SM prediction

Correlation with other WCs washes out the ring