Relative Formation Probabilities for Fluoride and Oxyfluoride Anions of U, Np, Pu and Am in Accelerator Mass Spectrometry Measurements at VERA

Andreas Wiederin¹

R. Golser¹, M. Kern¹, K. Hain¹, M. Martschini¹, A. Sakaguchi², P. Steier¹, A. Yokoyama³

¹University of Vienna, Austria ²University of Tsukuba, Japan ³Kanazawa University, Japan

Joint Annual Meeting of ÖPG and SPS 2021

Presenting author email: andreas.wiederin@univie.ac.at
Why is this interesting?

^{237}Np spike project

- Second most abundant anthropogenic actinide in the environment?
- Released by nuclear weapons tests and industry
- Potential environmental tracer
 - Long lived and highly mobile in water

Magill et al., Nucleonica GmbH, 2006
Why is this interesting?

237Np spike project

- Second most abundant anthropogenic actinide in the environment?
- Released by nuclear weapons tests and industry
- Potential environmental tracer
 - Long lived and highly mobile in water
- Challenging to measure in general environment:
 - Decay counting: very large samples ($T_{1/2}$!)
 - MS: background from 238U, 235UH$_2$
 - AMS: Lack of isotopic spike hinders quantification

Magill et al., Nucleonica GmbH, 2006
Why is this interesting?

237Np spike project

- Second most abundant anthropogenic actinide in the environment?
- Released by nuclear weapons tests and industry
- Potential environmental tracer
 - Long lived and highly mobile in water

- Challenging to measure in general environment:
 - Decay counting: very large samples (T_{1/2}!)
 - MS: background from 238U, 235UH₂
 - AMS: Lack of isotopic spike hinders quantification
 - Different isotope of Np to add to sample for relative measurements

- Severely understudied!

Magill et al., Nucleonica GmbH, 2006
• Plan: Develop isotopic spike for 237Np
 ◦ Joint Project: Universities of Vienna, Tsukuba and Kanazawa
 ◦ Current focus: 232Th(7Li,3n)236Np reaction

Why is this interesting?
237Np spike project

Magill et al., Nucleonica GmbH, 2006
Why is this interesting?

237Np spike project

- Plan: Develop isotopic spike for 237Np
 - Joint Project: Universities of Vienna, Tsukuba and Kanazawa
 - Current focus: 232Th(7Li,3n)236Np reaction

- Problem: Isobaric interference from 236U
 - Co-production in irradiation for spike production?
 - Need a method to distinguish 236U and 236Np!
 - 236U in environmental samples
 - U – Np Isobar separation necessary for 236Np spike
 - ILIAMS?

Magill et al., Nucleonica GmbH, 2006
AMS: negative ions
 - Actinides do not form sufficient atomic anions
 - Molecular anions
• AMS: negative ions
 ◦ Actinides do not form sufficient atomic anions
 → Molecular anions

• Fluoride molecular anions for actinides?

AMS: negative ions
 ○ Actinides do not form sufficient atomic anions
 ➔ Molecular anions

Fluoride molecular anions for actinides?

○ Research at VERA is focused on mixing oxide materials in Fe$_2$O$_3$ with PbF$_2$
 ➔ In situ fluoridization inside the Cs-sputter ion source
 [M. Kern, this meeting]
The relative formation probabilities for a range of (oxy-)fluoride molecular anions of U, Np, Pu and Am have been systematically investigated.

<table>
<thead>
<tr>
<th>AnF$_5^-$</th>
<th>AnF$_4$O$^-$</th>
<th>AnF$_3$O$_2^-$</th>
</tr>
</thead>
<tbody>
<tr>
<td>AnF$_3$O$^-$</td>
<td>AnF$_2$O$_2^-$</td>
<td>AnF$_4^-$</td>
</tr>
</tbody>
</table>

An stands for U, Np, Pu or Am.
The relative formation probabilities for a range of (oxy-)fluoride molecular anions of U, Np, Pu and Am have been systematically investigated.

Isobaric contaminations can be monitored with this data:
- First application: ^{236}U in prospective ^{236}Np spike material

UF_4^-, NpF_4^- candidates for U – Np separation with ILIAMS
Materials and Methods
• Reference material
 ◦ 236U, 237Np, 242Pu, 243Am (3x108 at) in nitric sol.
 ◦ Dried with 300µg Fe
 ◦ Ignition (800°C)
 ◦ Mixed with PbF$_2$ (1:9 mass ratio)
 ◦ Required in every beamtime
• Reference material
 ◦ 236U, 237Np, 242Pu, 243Am (3x108 at) in nitric sol.
 ◦ Dried with 300µg Fe
 ◦ Ignition (800°C)
 ◦ Mixed with PbF$_2$ (1:9 mass ratio)
 ◦ Required in every beamtime

• Material from 232Th(7Li,3n)236Np irradiation
 ◦ RIKEN Nishina Center for Accelerator Based Science
 – Chemical purification at University of Tsukuba
 ◦ Previously measured at VERA in oxide form
 – Residue mixed with PbF$_2$ for isobar analysis
• $\text{AnF}_m \text{O}_n^{1-}$ selected by low energy mass spectrometer
Measurements at VERA

- $\text{AnF}_m \text{O}_n^{-1}$ selected by low energy mass spectrometer
- He-stripping destroys molecules
• $\text{AnF}_m\text{O}_n^{-1}$ selected by low energy mass spectrometer
• He-stripping destroys molecules
• High energy mass spectrometer selects An^{3+}
- $\text{AnF}_m\text{O}_n^{-1}$ selected by low energy mass spectrometer
- He-stripping destroys molecules
- High energy mass spectrometer selects An^{3+}
- An^{3+} detected in Bragg type ionization chamber
• AnFmO₁⁻ selected by low energy mass spectrometer

• He-stripping destroys molecules

• High energy mass spectrometer selects An³⁺

• An³⁺ detected in Bragg type ionization chamber

• 24 machine setups with masses 306u to 338u measured on each target
 - Only electrostatic components were adjusted
 - magnetic rigidity constant for all setups
Results

All results are stated in the form of $\frac{\text{AnF}_m\text{O}_n}{\text{AnF}_5}$ ratios
- Characteristic $\text{UF}_m\text{O}_n^-/\text{UF}_5^-$ ratios
Characteristic $\text{AnF}_m \text{O}_n^-/\text{AnF}_5^-$ ratios for U, Np
Formation distribution: reference materials

- Characteristic $\text{AnF}_m\text{O}_n^-/\text{AnF}_5^-$ ratios for U, Np, Pu
Characteristics $\text{AnF}_m\text{O}_n^- / \text{AnF}_5^-$ ratios for U, Np, Pu, Am

Formation distribution: reference materials

Weighted means for $\text{AnF}_m\text{O}_n^- / \text{AnF}_5^-$

An stands for U, Np, Pu or Am

Reference material:
- U
- Np
- Pu
- Am
Characteristic $\text{AnF}_m\text{O}_n^-/\text{AnF}_5^-$ ratios for U, Np, Pu, Am

- Isobaric contaminations shift formation ratios
- $\text{AnF}_4^-/\text{AnF}_5^-$!
- Characteristic AnF$_m$O$_n^-$/AnF$_5^-$ ratios for U, Np, Pu, Am
 - Isobaric contaminations shift formation ratios
 - AnF$_4^-$/AnF$_5^-$!

- UF$_4^-$, NpF$_4^-$ for ILIAMS?
 - Hypothesis: correlation anion formation ratio to e$^-$ detachment energy?
 - Suppression of U vs Np by one order of magnitude in ion source
Analysis of irradiated samples

- Ratios shift between beamtimes, separation for AnF$_4^-$ remains stable
 - reference materials for every beamtime
Analysis of irradiated samples

- Ratios shift between beamtimes, separation for $\text{AnF}_4^−/\text{AnF}_5^−$ is stable
 - Reference materials for every beamtime
Analysis of irradiated samples

- Ratios shift between beamtimes, separation for AnF$_4^-$/AnF$_5^-$ is stable
 - Reference materials for every beamtime

- QC for measurement: m237 on irradiated targets (~10% of m236)
 - Co-produced 237Np!

- m237 AnF$_4^-$/AnF$_5^-$ ratio compatible with reference Np (1σ)
Analysis of irradiated samples

- $m_{236} \text{AnF}_4^-/\text{AnF}_5^-$ ratio is compatible with ref. Np (1σ)
 - Isobaric ^{236}U interference is negligible
Analysis of irradiated samples

- m236 AnF$_4^-$/AnF$_5^-$ ratio is compatible with ref. Np (1σ)
 - Isobaric 236U interference is negligible

- The production and separation of 236Np was successful
• The relative formation probabilities for

<table>
<thead>
<tr>
<th>AnF₅⁻</th>
<th>AnF₄O⁻</th>
<th>AnF₃O₂⁻</th>
</tr>
</thead>
<tbody>
<tr>
<td>AnF₃O⁻</td>
<td>AnF₂O₂⁻</td>
<td>AnF₄⁻</td>
</tr>
</tbody>
</table>

are characteristic for U, Np, Pu and Am

◦ This distribution can be used to identify isobaric contaminations

• This method could show that 236Np was successfully produced and chemically separated from 236U

◦ Isotopic spike for environmental 237Np?

• The next steps:

 ◦ ILIAMS separation of U and Np
 ◦ Maximize NpF₄⁻ formation
How stable are the ratios with increasing duration of the measurement?

AnF₅Oₙ/AnF₅ per sequence

Sequence 1
- q1_1
- q2_1

Sequence 2
- q1_2
- q2_2

~1.2h/seq
How stable are the ratios with increasing duration of the measurement?

- Ratios change significantly after the first two sequences
- All targets should be measured for 2 sequences (~2.5h) for consistent results
How stable are the ratios for different mixing rates with PbF\(_2\)?

- Reducing mixing ratios to 1:4.5 increases lower fluorides/oxfluorides
 - Similar to long measurement duration
 - Fluorine supply affects formation probabilities
- Increasing PbF\(_2\) further (1:18) has no significant effect
• $\text{AnF}_m \text{O}_n^-/\text{AnF}_5^-$ ratios change between beamtimes
 ◦ Ion source conditions?
 ◦ Tuning?
• Separation for $\text{AnF}_4/\text{AnF}_5$ remains stable
 ◦ Method is robust against tuning variations!
• Reference samples have to be included in every measurement