

VIENNA - DOCTORAL - SCHOOL - PHYSICS

Relative Formation Probabilities for Fluoride and Oxyfluoride Anions of U, Np, Pu and Am in Accelerator Mass Spectrometry Measurements at VERA

Andreas Wiederin¹

R. Golser¹, M. Kern¹, K. Hain¹, M. Martschini¹, A. Sakaguchi², P. Steier¹, A. Yokoyama³

¹University of Vienna, Austria ²University of Tsukuba, Japan ³Kanazawa University, Japan

Joint Annual Meeting of ÖPG and SPS 2021

Presenting author email: andreas.wiederin@univie.ac.at

- Second most abundant anthropogenic actinide in the environment?
- Released by nuclear weapons tests and industry
- Potential environmental tracer
 - Long lived and highly mobile in water

Why is this interesting? ²³⁷Np spike project

- Second most abundant anthropogenic actinide in the environment?
- Released by nuclear weapons tests and industry
- Potential environmental tracer
 Long lived and highly mobile in water
- Challenging to measure in general environment:
 - \circ Decay counting: very large samples (T_{1/2}!)
 - MS: background from ²³⁸U, ²³⁵UH₂
 - AMS: Lack of isotopic spike hinders quantification

Why is this interesting? ²³⁷Np spike project

- Second most abundant anthropogenic actinide in the environment?
- Released by nuclear weapons tests and industry
- Potential environmental tracer
 Long lived and highly mobile in water
- Challenging to measure in general environment:
 - $^{\circ}$ Decay counting: very large samples (T_{1/2}!)
 - MS: background from ²³⁸U, ²³⁵UH₂
 - $\circ\,$ AMS: Lack of isotopic spike hinders quantification
 - Different isotope of Np to add to sample for relative measurements

Severely understudied!

Why is this interesting? ²³⁷Np spike project

- Plan: Develop isotopic spike for ²³⁷Np
 - Joint Project: Universities of Vienna, Tsukuba and Kanazawa

Current focus: ²³²Th(⁷Li,3n)²³⁶Np reaction

Why is this interesting? ²³⁷Np spike project

- Plan: Develop isotopic spike for ²³⁷Np
 - Joint Project: Universities of Vienna, Tsukuba and Kanazawa
 - Current focus: ²³²Th(⁷Li,3n)²³⁶Np reaction

- Problem: Isobaric interference from ²³⁶U
 - Co-production in irradiation for spike production?
 - Need a method to distinguish ²³⁶U and ²³⁶Np!
 - ²³⁶U in environmental samples
 - U Np Isobar separation necessary for ²³⁶Np spike
 - ILIAMS?

Why is this interesting? ²³⁷Np spike project

• AMS: negative ions

Actinides do not form sufficient atomic anions

→ Molecular anions

• AMS: negative ions

Actinides do not form sufficient atomic anions

Molecular anions

• Fluoride molecular anions for actinides?

[X.-L. Zhao et al., Nucl Instrum Methods Phys Res B 294 (2013), 356-360]

[R.J. Cornett et al., Nucl Instrum Methods Phys Res B 361 (2015), 317-321]

• AMS: negative ions

Actinides do not form sufficient atomic anions

Molecular anions

• Fluoride molecular anions for actinides?

[X.-L. Zhao et al., Nucl Instrum Methods Phys Res B 294 (2013), 356-360]

[R.J. Cornett et al., Nucl Instrum Methods Phys Res B 361 (2015), 317-321]

Research at VERA is focused on mixing oxide materials in Fe₂O₃ with PbF₂ In situ fluoridization inside the Cs-sputter ion source [M. Kern, this meeting]

• The relative formation probabilities for a range of (oxy-)fluoride molecular anions of U, Np, Pu and Am have been systematically investigated

AnF₅ [−]	AnF₄O⁻	AnF ₃ O ₂ ⁻
AnF₃O⁻	$AnF_2O_2^-$	AnF₄⁻

An stands for U, Np, Pu or Am

• The relative formation probabilities for a range of (oxy-)fluoride molecular anions of U, Np, Pu and Am have been systematically investigated

AnF₅ [−]	AnF₄O⁻	$AnF_3O_2^-$
AnF₃O⁻	$AnF_2O_2^-$	AnF₄⁻

An stands for U, Np, Pu or Am

- Isobaric contaminations can be monitored with this data
 Eirst application:²³⁶U in prospective ²³⁶Np spike material
 - First application:²³⁶U in prospective ²³⁶Np spike material
- UF₄⁻, NpF₄⁻ candidates for U Np separation with ILIAMS

Materials and Methods

Reference material

- ^o ²³⁶U, ²³⁷Np, ²⁴²Pu, ²⁴³Am (3x10⁸ at) in nitric sol.
- $\circ\,$ Dried with 300µg Fe
- Ignition (800°C)
- Mixed with PbF₂ (1:9 mass ratio)
- Required in every beamtime

Sample preparation

Reference material

- ^o ²³⁶U, ²³⁷Np, ²⁴²Pu, ²⁴³Am (3x10⁸ at) in nitric sol.
- $\circ\,$ Dried with 300µg Fe
- Ignition (800°C)
- Mixed with PbF₂ (1:9 mass ratio)
- Required in every beamtime
- Material from ²³²Th(⁷Li,3n)²³⁶Np irradiation
 - RIKEN Nishina Center for Accelerator Based Science
 Chemical purification at University of Tsukuba
 - $\circ\,$ Previously measured at VERA in oxide form
 - Residue mixed with PbF₂ for isobar analysis

Sample preparation

Measurements at VERA

AnF_mO_n¹⁻ selected by low energy mass spectrometer

Measurements at VERA

- AnF_mO_n¹⁻ selected by low energy mass spectrometer
- He-stripping destroys molecules

- AnF_mO_n¹⁻ selected by low energy mass spectrometer
- He-stripping destroys molecules
- High energy mass spectrometer selects An³⁺

- AnF_mO_n¹⁻ selected by low energy mass spectrometer
- He-stripping destroys molecules
- High energy mass spectrometer selects An³⁺
- An³⁺ detected in Bragg type ionization chamber

- AnF_mO_n¹⁻ selected by low energy mass spectrometer
- He-stripping destroys molecules
- High energy mass spectrometer selects An³⁺
- An³⁺ detected in Bragg type ionization chamber

- 24 machine setups with masses 306u to 338u measured on each target
 - Only electrostatic components were adjusted
 - magnetic rigidity constant for all setups

Results

All results are stated in the form of AnF_mO_n/AnF_5 ratios

Characteristic UF_mO_n⁻ /UF₅⁻ ratios

 $^\circ\,$ Characteristic $AnF_mO_n^-/AnF_5^-$ ratios for U, Np

Characteristic AnF_mO_n⁻ /AnF₅⁻
 ratios for U, Np, Pu

Characteristic AnF_mO_n⁻/AnF₅⁻
 ratios for U, Np, Pu, Am

- Characteristic AnF_mO_n⁻/AnF₅⁻
 ratios for U, Np, Pu, Am
 - Isobaric contaminations shift formation ratios
 - $-AnF_4^-/AnF_5^-!$

- Characteristic AnF_mO_n⁻ /AnF₅⁻
 ratios for U, Np, Pu, Am
 - Isobaric contaminations shift formation ratios
 - $-\operatorname{AnF_4^{-}/AnF_5^{-}!}$
- UF₄⁻, NpF₄⁻ for ILIAMS?
 Hypothesis: correlation anion formation ratio to e⁻ detachment energy?
 - Suppression of U vs Np by one order of magnitude in ion source

- Ratios shift between beamtimes, separation for AnF4₄⁻ remains stable
 - reference materials for every beamtime

- Ratios shift between beamtimes, separation for AnF₄⁻/AnF₅⁻ is stable
 - Reference materials for every beamtime

- Ratios shift between beamtimes, separation for AnF₄⁻/AnF₅⁻ is stable
 - Reference materials for every beamtime
- QC for measurement: m237 on irradiated targets (~ 10% of m236) – Co-produced ²³⁷Np!
 - m237 AnF₄⁻/AnF₅⁻ ratio compatible with reference Np (1σ)

- m236 AnF₄⁻/AnF₅⁻ ratio is compatible with ref. Np (1σ)
 - Isobaric ²³⁶U interference is negligible
- The production and separation of ²³⁶Np was successful

Conclusion and outlook

•The relative formation probabilities for

AnF₅ [−]	AnF₄O⁻	AnF ₃ O ₂ ⁻
AnF₃O⁻	$AnF_2O_2^-$	AnF₄ [−]

are characteristic for U, Np, Pu and Am

• This distribution can be used to identify isobaric contaminations

 This method could show that ²³⁶Np was successfully produced and chemically separated from ²³⁶U

• Isotopic spike for environmental ²³⁷Np?

- The next steps:
 - ILIAMS separation of U and Np
 - Maximize NpF₄⁻ formation

Appendix

How stable are the ratios with increasing duration of the measurement?

How stable are the ratios with increasing duration of the measurement?

- Ratios change significantly after the first two sequences
- All targets should be measured for 2 sequences (~2.5h) for consistent results

How stable are the ratios for different mixing rates with PbF₂?

 Reducing mixing ratios to 1:4.5 increases lower Am fluorides/oyxfluorides PbF2 10 - Similar to long mixing ratios Pu 1:9 measurement Ratio to AnF₅ duration Am – Fluorine supply 1:18 Np U mix2 affects formation Np mix2 Pu mix2 probablilities 1:4.5 -U mix0.5 Np mix0.5 Pu mix0.5 U Increasing PbF₂ further 0.01 (1:18) has no significant effect AnF₄O/AnF₅ AnF₃O₂/AnF₅ AnF₃O/AnF₅ AnF₂O₂/AnF₅ AnF₄/AnF₅

- AnF_mO_n⁻/AnF₅⁻ ratios change between beamtimes
 - Ion source conditions?
 - Tuning?
- Separation for AnF₄/AnF₅ remains stable
 - Method is robust against tuning variations!
- Reference samples have to be included in every measurement

How stable are the ratios between Beamtimes

