ETH zürich

ArDM - The only Dual-Phase tonnescale Liquid Argon Dark Matter Detector

SPS and ÖPG Joint Annual Meeting

September 2, 2021

Global Argon Dark Matter Collaboration (GADMC)

DArT

Multi-national collaboration of >500 people from >80 institutions with a two-step program Joint expertise of several argon dark matter experiments

<image>

ArDM

MiniCLEAN

DarkSide-50

SPS and ÖPG, September 2, 2021

A 50t depleted argon (DAr) Dual-phase TPC inside a 700t atmospheric argon (AAr) cryostat → Projected sensitivity of 1.2×10⁻⁴⁷ cm² at a WIMP mass of 1TeV/c² (with a 100 tonne·year exposure and a 20t fiducial mass) Alex Stauffer, ETH Zürich

Direct Dark Matter Detection (WIMPs)

Backgrounds and pulse shape discrimination in the ArDM liquid argon TPC ArDM Collaboration • J. Calvo (Zurich, ETH) et al. (Dec 2, 2017) Published in: JCAP 12 (2018) 011 • e-Print: 1712.01932 [physics.ins-det]

Measurement of the attenuation length of argon scintillation light in the ArDM LAr TPC ArDM Collaboration • J. Calvo (Zurich, ETH) et al. (Nov 8, 2016) Published in: *Astropart.Phys.* 97 (2018) 186-196 • e-Print: 1611.02481 [astro-ph.IM]

ArDM

Total volume: 1.5t of LAr Active Dual-phase TPC target volume: 650kg of LAr Located at: Laboratorio Subterráneo Canfranc (LSC), Spain 850m below the surface

Installation at LSC: 2012-2013 First Single-phase (SP) data-taking (Start of Run I): February 2015 Final Single-phase commissioning: July 2015 Upgrade to Dual-phase (DP): June 2016 First Dual-phase data-taking (Start of Run II): December 2017 Continuous upgrades and optimizations until late 2018 Dual-phase data-taking period: Summer 2019 Stopped operating in 2020 → new phase: DArT

Total raw data of Run I: 3.3 billion SP events Total raw data of Run II: 3.5 billion DP events; (thereof 334 million events with a neutron calibration source)

> Commissioning of the ArDM experiment at the Canfranc underground laboratory: first steps towards a tonne-scale liquid argon time projection chamber for Dark Matter searches ArDM Collaboration • J. Calvo (Zurich, ETH) et al. (Dec 19, 2016) Published in: JCAP 03 (2017) 003 • e-Print: 1612.06375 [physics.ins-det]

SPS and ÖPG, September 2, 2021

Laboratorio Subterráneo Canfranc

Alex Stauffer, ETH Zürich

Dual-Phase LAr Time-Projection Chamber (TPC)

104

- 10³

 -10^{1}

100

 -10^{3}

^{10²} Events

- 10¹

100

400

500

Events

Two signals in LAr/GAr: $S1 \rightarrow Scintillation in the liquid$ (provides pulse-shape discrimination \rightarrow F90) $S2 \rightarrow Electroluminescence$ (scintillation in the gaseous phase proportional to the extracted ionization charge; provides charge-to-light ratio $\rightarrow S2/S1$)

Event vertex reconstruction in **3D** XY: S2 light pattern on top PMTs Z: Time difference between S1 and S2 → precise fiducialization

450 500

Two types of recoils ER: Electrons and photons NR: Neutrons and WIMPs

Two discrimination variables in Ar: F90 (pulse-shape) S2/S1 (charge-to-light ratio)

Region of interest for WIMPs/Neutrons

rDM

PP

dat

rDM

DP

data

╋

Neutron

source

ArDM

DP

data

Two types of recoils ER: Electrons and photons NR: Neutrons and WIMPs

Two discrimination variables in Ar: F90 (pulse-shape) S2/S1 (charge-to-light ratio)

 $\begin{array}{l} \mbox{Region of interest for} \\ \mbox{WIMPs}/\mbox{Neutrons} \end{array}$

ER: Electrons and photons NR: Neutrons and WIMPs

→ Only 1 in ~10⁵ ER events is not rejected by pulse-shape discrimination alone (strongly energy dependent; here the RoI is F90 \ge 0.6)

S1 bin [p. e.]	ER Leakage into $F90 \in [0.6, 1.0]$	N _{NR} Neutron Data	$N_{\rm NR}$ DP Data	252 Cf NR events	²⁵² Cf Activity [mBq]
30 to 80	$1.34e-05 \pm 2.03e-07$	7684.8 ± 91.3	683.9 ± 21.2	7000.9 ± 93.7	55.51 ± 0.74
80 to 130	$4.92e-09 \pm 1.08e-10$	3709.7 ± 61.2	217.3 ± 10.7	3492.4 ± 62.1	27.69 ± 0.49
130 to 180	$2.88e-12 \pm 8.06e-14$	1478.5 ± 34.5	153.1 ± 8.9	1325.4 ± 35.6	10.51 ± 0.28
180 to 230	$4.80e-15 \pm 1.59e-16$	1329.9 ± 36.5	124.6 ± 8.0	1205.3 ± 37.3	9.56 ± 0.30
Total:		14202.9 ± 120.8	1178.9 ± 26.6	13024.0 ± 123.7	103.26 ± 0.98

rDM

DP

data

╋

Neutron

source

ArDM

PP

data

Two types of recoils ER: Electrons and photons NR: Neutrons and WIMPs

Discrimination via pulse shape (F90): $\sim 10^5$ (energy dependent)

Region of interest for WIMPs/Neutrons

Two types of recoils ER: Electrons and photons NR: Neutrons and WIMPs

Discrimination via pulse shape (F90): $\sim 10^5$ (energy dependent)

Region of interest for WIMPs/Neutrons

rDM

DP

dat

ArDM data with a neutron source allows the extraction of a new discriminator of ERs versus NRs

2D Gaussian fit of neutron-dominated data in the ${\rm S2}/{\rm S1}$ versus F90 plane

→ New Neutron discriminator (the distance to the center of the 2D Gaussian in terms of its CDF)
0: Very NR-like

1: Very NR-unlike 🖶 ER-like

→ additional ER rejection power (work in progress)

Outlook

DArT: ³⁹Ar Depletion Factor Measurement Facility

 $\mathsf{DF} = 10$, precision of 1%

Alex Stauffer, ETH Zürich

Design and Construction of a New Detector to Measure Ultra-Low Radioactive-Isotope Contamination of Argon

DarkSide-20k Collaboration • <u>C.E. Aalseth</u> (PNL, Richland) Show All(330) Jan 22, 2020

19 pages Published in: *JINST* 15 (2020) 02, P02024 e-Print: 2001.08106 [astro-ph.IM] DOI: 10.1088/1748-0221/15/02/P02024 Experiments: DARKSIDE

Single-phase inner detector for 1.6 L of LAr inside 1t ArDM detector acting as an active veto for background radiation (at LSC)

→ Measure DAr-to-AAr 39 Ar depletion factor (DF) of the order of 1000 with 10% precision in a one week run

Status: the PMTs have been tested in LN_2 at ETH Zürich and are currently being coated at LNGS; Integration of DArT into ArDM in the coming months

 $\mathsf{DF}=1400,$ precision of 7%

SPS and ÖPG, September 2, 2021

Global Argon Dark Matter Collaboration (GADMC)

DArT

Multi-national collaboration of >500 people from >80 institutions with a two-step program Joint expertise of several argon dark matter experiments

<image>

ArDM

MiniCLEAN

DarkSide-50

SPS and ÖPG, September 2, 2021

A 50t depleted argon (DAr) Dual-phase TPC inside a 700t atmospheric argon (AAr) cryostat → Projected sensitivity of 1.2×10⁻⁴⁷ cm² at a WIMP mass of 1TeV/c² (with a 100 tonne·year exposure and a 20t fiducial mass) Alex Stauffer, ETH Zürich

Questions?

Backup slides

DArT - Planned Schedule

1	$\neg \uparrow$	
$\langle \boldsymbol{\wedge} \rangle$	2	
12		4.00
a		
1		

			-	2021						2022	C.
Item	Description	Responsible	JUN	JUL	AUG	SEP	ОСТ	NOV	DEC	JAN-JUNE	
Slow control system	SW writing	Cagliari									
Slow control system	system testing	Cagliari									
DArT assembly and test	DART cryogenic and readout tests@ LSC	CIEMAT									
DArT Acrylic radio-pure	machining	CARLETON/Astr ocent									
DART refurbihsing	Installation of radio-pure acrylic@ LSC	CIEMAT									
DART gas system construction		CIEMAT/Cagliari									
DART gas system installation and test with slow control		CIEMAT/Cagliari									
TriggerDAQ	DAQ tests	ZARAGOZA									
	Trigger design and test	ZARAGOZA									
ArDM refurbishment	PMT Coating LNGS and shipping to LSC	LNGS									
ArDM preparation @LSC	ArDM preparation for single phase	ETHZ	1								
DArT /ArDMIntegration	integration DArT/ArDM	CIEMAT/ETHZ									
Operations @LSC	ArDM+DArT safety approval	ALL									
	ArDM filling and commissioning	ETHZ									
	DART filling and commissioning	ALL						_			
	slow control commissioning	Cagliari/ETH									
Lead belt	engineering and safety review	LSC/CIEMAT									
	purchase and machininng of the lead	LSC									
	assembly of the new structure	CIEMAT									
	first data taking with AAr	ALL									
UAr Procurement	UAr procurement from DS50	LNGS/Aria									-

泐

DarkSide-20k goal:

increase exposure by 3-4 orders of magnitude total number of background events in full exposure <0.1 (as in DarkSide-50)

Taken from: CERN Detector Seminar from May 28, 2021 by Alexander Kish; The DarkSide-20k dual-phase argon TPC for particle dark matter detection Indico: https://indico.cern.ch/event/1041835/