

M. Ferrillo, UZH

JOINT ANNUAL MEETING OF THE ÖPG AND SPS AUGUST, 31ST 2021 - INNSBRUCK

Search for New Physics in baryons decay at LHCb

Martina Ferrillo Physik Institut, Universität Zürich (UZH) martina.ferrillo@cern.ch

NEW PHYSICS IN BARYONS DECAY: OVERVIEW

Joint Annual Meeting SPS-ÖPG, 31/08/21

THE FLAVOUR PUZZLE IN SEMILEPTONIC DECAYS

What are the *Flavour anomalies* ?

The assumption

Lepton Flavour Universality (LFU): the electroweak coupling of bosons (W^{\pm}, Z^0) to leptons is identical.

The observation

Hints for lepton flavour universality violation in a variety of semileptonic measurements, deviating $\sim 3.1 \sigma$ from the Standard Model. \Rightarrow *Flavour Anomalies* \implies More in A. Buonaura's talk [302]

Test of LFU involving the 3rd generation of quarks and lep

$$R(H_c) = \frac{\text{BR}(B \to H_c \tau \nu)}{\text{BR}(B \to H_c \ell \nu)} \xrightarrow{\text{signal}} \text{normalisation}$$

ptons
$$(\underline{b} \rightarrow c\ell \nu)$$

where $\ell = \mu, e$

New Physics with Λ_b baryons at LHCb

Why so interesting? Experimentally convenient!

- e.g. $B \rightarrow D^{(*)} \mu \nu$ decays
 - Different spin-dynamics can be probed \blacktriangleright
 - **Reduced backgrounds** due to baryon nr conservation \blacktriangleright
- **Unique feature** to hadron colliders, not possible in leptonic beauty factories
- with large signal yields ($\sim 6M$ events for Run2)

 Λ_h^0 baryons are spin 1/2 particles, which complement the NP searches performed in the mesonic sector,

High statistics of Λ_h^0 baryons produced at LHCb (~ 20 % of the produced hadrons) [PRD.85.032008]

ANGULAR ANALYSIS TO SEARCH FOR NEW PHYSICS

What looking for? New Physics (NP) in semi-leptonic $b \rightarrow c\ell\nu$ tree-level transitions

 Λ_b^0

 $\Lambda_{h}^{0} \to \Lambda_{c}^{+} \mu^{-} \bar{\nu}_{\mu}$

low-energy limit: Lepton Flavour Universality

Non-null measured values of Wilson Coefficients would be a clear **sign** of **New Physics**.

M. Ferrillo, UZH

Probe the high-energy dynamics of the Standard Model Lagrangian, by measuring the Wilson Coefficients

4/13

ANGULAR ANALYSIS TO SEARCH FOR NEW PHYSICS

What looking for? New Physics (NP) in semi-leptonic $b \rightarrow c\ell\nu$ tree-level transitions

decay products (MF, A. Mathad, P. Owen, N. Serra [JHEP12(2019)148])

M. Ferrillo, UZH

Enhanced sensitivity to NP contributions through the study of angular observables of $\Lambda_b \to \Lambda_c \mu \nu$

- Study of mesonic decays exhibits good > sensitivity to the Wilson Coefficients, from **global** fits to $b \rightarrow c\mu\nu$ and $b \rightarrow ce\nu$ [JHEP01 2019 009]
- ► In our study we show that the **baryonic counterpart** $\Lambda_b \rightarrow \Lambda_c \mu \nu$ can complement and better constrain some muonic parameters, e.g. C_{V_R}

This measurement can potentially validate or discard the other existing anomalies [PRD 100, 035035]

$$\frac{R(\Lambda_c)}{R_{\rm SM}(\Lambda_c)} \simeq 0.262 \frac{R(D)}{R_{\rm SM}(D)} + 0.738 \frac{R(D^*)}{R_{\rm SM}(D^*)}$$

Theoretically clean measurement: tree-level transition in the SM V

- **No dependence** on **CKM** elements, *i.e.* V_{cb} V
- **Reduced** theoretical and experimental **uncertainties** in the ratio V
- **Challenging** measurement: 3 missing particles in the final state X

M. Ferrillo, UZH

$R(\Lambda)$: A LFU TEST WITH BARYONS

Lepton Flavour Universality can be tested in the ratio:

$$R(\Lambda_c) = \frac{\text{BR}(\Lambda_b \to \Lambda_c \tau \nu)}{\text{BR}(\Lambda_b \to \Lambda_c \mu \nu)} \quad \text{where } \tau^- \to \mu^- \bar{\nu}_{\mu} \nu_{\tau}$$

[*] Measurement of New Physics operators **Wilson Coefficients for muons**

- Our aim is to analyse the Run2 (2016-2018) dataset
- We assume Λ_b decays to be **unpolarised** [JHEP06(2020)110], where $\Lambda_c^+ \rightarrow p K^+ \pi^-$

Sensitivity in the 2D phase space q^2 , $\cos \theta_{\mu}$

CP violation effects have not been considered *i.e.* Wilson Coefficients are **real** variables

$\Lambda_b \rightarrow \Lambda_c \mu \nu$ ANGULAR^[*] ANALYSIS

$$q^{2} = (\hat{P}_{\Lambda_{b}} - \hat{P}_{\Lambda_{c}})^{2}$$
$$\cos \theta_{\ell} = \overrightarrow{P}_{\Lambda_{b}}^{\{W^{*}\}} \cdot \overrightarrow{P}_{\ell}^{\{W^{*}\}}$$

7/13

$$M_{\rm corr}(\Lambda_b) := \sqrt{m_{\rm vis}^2 + p_{\perp}^2} + p_{\perp}$$
 with *n*

- Retrieve p_{\perp} , the **unreconstructed** momentum perp. to the Λ_b flight direction
- $M_{\rm corr} \equiv {\rm minimum \ mass}$ in the hp of \blacktriangleright one missing massless particle (neutrino)

Powerful **discriminating** variable btw signal and backgrounds

$\Lambda_b \rightarrow \Lambda_{\mu\nu}$: ANALYSIS STRATEGY - SIGNAL FITS

Signal extraction: fit to the corrected mass M_{corr} binned in the phase space variables q^2 , $\cos \theta_{\mu}$

n_{vis} invariant mass of the visible decay products

$$M_{\rm corr}(\Lambda_b) := \sqrt{m_{\rm vis}^2 + p_{\perp}^2} + p_{\perp}$$
 with $m_{\rm vis}$

M. Ferrillo, UZH

$\Lambda_b \rightarrow \Lambda_{\mu\nu}$: ANALYSIS STRATEGY - SIGNAL FITS

 $n_{\rm vis}$ invariant mass of the visible decay products

 $\partial^2 \Gamma$ Fit model: efficiency and resolution maps folded into our model to extract the Wilson Coefficients $\partial q^2 \partial \cos \theta_{\mu}$

Form Factors parameters from latest Lattice QCD calculations

(Max. Likelihood binned):

M. Ferrillo, UZH

$\Lambda_b \rightarrow \Lambda_c \mu \nu$: ANALYSIS STRATEGY - NP FITS

$$\kappa \sum_{j=\text{bins}} R(\overrightarrow{x}_{\text{reco}}^{i}, \overrightarrow{x}_{\text{true}}^{j}) \epsilon(\overrightarrow{x}_{\text{true}}^{j}) F(\overrightarrow{x}_{\text{true}}^{j}, \overrightarrow{\theta})$$

[*] Lepton Flavour Universality test

 $R(\Lambda_c) = \frac{\text{BR}(\Lambda_b \to \Lambda_c \tau \nu)}{\text{BR}(\Lambda_b \to \Lambda_c \mu \nu)}$

- Measurement in progress on Run2 2016 data
- Use of Fast Simulation to reduce the uncertainty due to the MC limited statistics

- Include only Tracker information, gaining a factor 8 in processing times and saving 40% disk space
- Need to emulate the response of High Level
 Trigger stages in bins of hadrons momentum

Signal extraction

given the complication of 3 missing neutrinos in the final state, a 3D simultaneous template fit is performed

$$q^{2} = (\hat{P}_{\Lambda_{b}} - \hat{P}_{\Lambda_{c}})^{2}$$
$$M_{\text{miss}}^{2} = (\hat{P}_{\Lambda_{b}} - \hat{P}_{\Lambda_{c}} - \hat{P}_{\mu})^{2}$$
$$E_{\mu}^{*}$$

 $\Lambda_b \to \Lambda_c K \mu X$

$R(\Lambda)$ ANALYSIS: STRATEGY

~ 3.1σ from the SM. Hints for LFU violation?

alternative to investigate New Physics scenarios

- $\Lambda_b \rightarrow \Lambda_c \mu \nu$ angular analysis to measure Wilson Coefficients •
- $R(\Lambda_c)$ muonic as a LFU test •

advanced and close to review. Stay tuned!

>

>

SUMMARY AND CONCLUSIONS

- Exciting times in the Flavour sector: current semileptonic decays measurements deviate
 - More measurements essential to validate or discard the current observations
- Semileptonic Λ_h baryon decays provide a theoretically and experimentally appealing

Both measurements are being performed in the LHCb group at UZH. They are well

Thanks for listening!

ANGULAR ANALYSIS TO SEARCH FOR NEW PHYSICS

What looking for? New Physics (NP) in semi-leptonic $b \rightarrow c\ell\nu$ tree-level transitions

decay products (MF, A. Mathad, P. Owen, N. Serra [JHEP12(2019)148])

Sensitive to the spin of the tree-level <u>NP mediator</u>: heavy vector W', heavy scalar H^{\pm} , vector/scalar Leptoquark ...

EFT generic Lagrangian of the process (point-like interaction):

$$\mathscr{L}_{eff} = -\frac{4G_F}{\sqrt{2}} V_{cb} \left\{ (1+V_L) \ \bar{l}_L \gamma_\mu \nu_L \bar{c}_L \gamma^\mu b_L + V_R \bar{l}_L \gamma_\mu \nu_L \bar{c}_R \gamma^\mu b_R + S_L \bar{l}_R \nu_L \bar{c}_R b_L + S_R \bar{l}_R \nu_L \bar{c}_L b_R + T_L \bar{l}_R \sigma_{\mu\nu} \nu_L \bar{c}_R \sigma^{\mu\nu} b_L \right\} + \mathrm{h.c.}$$

Enhanced sensitivity to NP contributions through the study of angular observables of $\Lambda_b \to \Lambda_c \mu \nu$

 $\langle \Lambda^0_b \rangle \, {a \atop k}$

They change the shape of the phase space distribution

dC W^{-} \bar{V}

Fit model: efficiency and resolution maps folded into our model $\frac{\partial^2 \Gamma}{\partial q^2 \partial \cos \theta_{\mu}}$ to extract the Wilson Coefficients

Form Factors parameters from latest Lattice QCD calculations

(Max. Likelihood binned):

- ▶ $\overrightarrow{\theta}$ parameter of interest (Pol), *i.e.* Wilson Coefficients
- ► $\vec{x}^i = (q^{2i}, \cos \theta_u^i)$ phase space vars
- κ normalisation \blacktriangleright
- \succ R, ϵ resolution and efficiency matrices, respectively
- F description of the **decay dynamics** \blacktriangleright

$\Lambda_b \rightarrow \Lambda_c \mu \nu$: ANALYSIS STRATEGY - NP FITS

 $\operatorname{PDF}(\overrightarrow{x}_{\operatorname{reco}}^{i}, \overrightarrow{\theta}) = \kappa \sum R(\overrightarrow{x}_{\operatorname{reco}}^{i}, \overrightarrow{x}_{\operatorname{true}}^{j}) \epsilon(\overrightarrow{x}_{\operatorname{true}}^{j}) F(\overrightarrow{x}_{\operatorname{true}}^{j}, \overrightarrow{\theta})$

j=bins