AMS of ⁹⁰Sr at the sub-fg-level using laser photodetachment at VERA Oscar Marchhart^{1,2}, Dag Hanstorp³, Maki Honda⁴, Johannes Lachner^{1,5}, Martin Martschini¹, Alfred Prilller¹, Peter Steier¹, Alexander Wieser^{1,2}, Robin Golser¹ ¹Universität Wien, Fakultät für Physik – Isotopenphysik Joint Annual Meeting of ÖPG and SPS 2021 ²Universität Wien, Fakultät für Physik & VDSP ³University of Gothenburg, Department of Physics ⁴Japan Atomic Energy Agency ⁵Helmholtz-Zentrum Dresden-Rossendorf # The long-lived fission product 90Sr - 90 Sr ($T_{1/2} \approx 29$ a) produced in nuclear fission with a yield of 4% - Similarities to ¹³⁷Cs, but also major differences - Established measuring method is decay counting \rightarrow chemical separation of β -emitter and ingrowth of 90 Y (>2 weeks) - With Accelerator Mass Spectrometry (AMS) the material, chemistry effort and measurement time can be significantly reduced # The long-lived fission product 90Sr - High radiotoxicity & T_{1/2,biolog.}≈10-18 a - Due to chemical similarities to Ca → accumulation in bones or teeth - Soluble and very mobile in the environment → potential as tracer [1] Karlsruhe chart of the nuclides 7th edition #### **Achievements** - ILIAMS achieves Zr suppression of $10^7 \rightarrow$ access to 90 Sr at VERA - Overall ⁹⁰Sr detection efficiency of 0.4‰ - More than tenfold improved AMS detection limit of 0.1 mBq - First successful measurements of environmental samples ## Ion Laser InterAction Mass Spectrometry (ILIAMS) - Exploitation in differences in the electron affinity (EA) → isobar suppression - EAs for atomic anions reversed → not suitable - $SrF_3^- ZrF_3^-$ system has right properties | 0.8 | selected l
energ | | | | |-----|---------------------|-----|--------|------| | 0.6 | | / | | | | 0.4 | unwanted
isobar | | isotop | e of | | 0.2 | Isobai | | inter | | | 0.0 | 6 0.8 | 1.0 | 1.2 | 1.4 | | Anion | EA (eV) | |------------------|-----------------------| | Sr ⁻ | 0.05206 ± 0.00006 [2] | | Zr ⁻ | 0.427 ± 0.014 [3] | | SrF ₃ | > 3.6 [4] | | ZrF ₃ | < 2.3 [4] | - [2] Andersen et.al., Phys.Rev. A.,1997 - [3] Feigerle et.al., J. Chem. Phys., 1981 - [4] Eliades et.al., NIMB, 2015 ## SrF₃ molecule performance - Added PbF₂ by weight to sample material of SrF₂ - Excellent SrF_3^- and poor ZrF_3^- formation [5] \rightarrow isobar suppression - SrF_3^- ionization yield of 0.9% for samples with higher PbF_2 content ### ILIAMS suppression and transmissions - He+O₂ buffer gas without laser → suppression of 10⁵ - He+O₂ combined with 532 nm laser → Zr suppression of 10⁷ - Transmissions: i) ILIAMS: 35% ii) Accelerator: 23% (+3, 3 MV) ### ILIAMS suppression and transmissions - He+O₂ buffer gas without laser → suppression of 10⁵ - He+O₂ combined with 532 nm laser → Zr suppression of 10⁷ - Transmissions: i) ILIAMS: 35% ii) Accelerator: 23% (+3, 3 MV) ### ILIAMS suppression and transmissions - He+O₂ buffer gas without laser → suppression of 10⁵ - He+O₂ combined with 532 nm laser → Zr suppression of 10⁷ - Transmissions: i) ILIAMS: 35% ii) Accelerator: 23% (+3, 3 MV) ## Results in-house made reference materials - Overall ⁹⁰Sr detection efficiency is 0.4‰ - Blank level 90 Sr/Sr = (4.5 ± 3.2)×10⁻¹⁵ \rightarrow detection limit of < 0.1 mBq - Improvement of previous AMS detection limit of 3 mBq [6] #### **Environmental samples** First successful measurements of environmental samples #### **Environmental samples** First successful measurements of environmental samples