

AMS of ⁹⁰Sr at the sub-fg-level using laser photodetachment at VERA

Oscar Marchhart^{1,2}, Dag Hanstorp³, Maki Honda⁴, Johannes Lachner^{1,5}, Martin Martschini¹, Alfred Prilller¹, Peter Steier¹, Alexander Wieser^{1,2}, Robin Golser¹

¹Universität Wien, Fakultät für Physik – Isotopenphysik

Joint Annual Meeting of ÖPG and SPS 2021

²Universität Wien, Fakultät für Physik & VDSP

³University of Gothenburg, Department of Physics

⁴Japan Atomic Energy Agency

⁵Helmholtz-Zentrum Dresden-Rossendorf

The long-lived fission product 90Sr

- 90 Sr ($T_{1/2} \approx 29$ a) produced in nuclear fission with a yield of 4%
- Similarities to ¹³⁷Cs, but also major differences
- Established measuring method is decay counting \rightarrow chemical separation of β -emitter and ingrowth of 90 Y (>2 weeks)
- With Accelerator Mass Spectrometry (AMS) the material, chemistry effort and measurement time can be significantly reduced

The long-lived fission product 90Sr

- High radiotoxicity & T_{1/2,biolog.}≈10-18 a
- Due to chemical similarities to Ca → accumulation in bones or teeth
- Soluble and very mobile in the environment → potential as tracer [1]

Karlsruhe chart of the nuclides 7th edition

Achievements

- ILIAMS achieves Zr suppression of $10^7 \rightarrow$ access to 90 Sr at VERA
- Overall ⁹⁰Sr detection efficiency of 0.4‰
- More than tenfold improved AMS detection limit of 0.1 mBq
- First successful measurements of environmental samples

Ion Laser InterAction Mass Spectrometry (ILIAMS)

- Exploitation in differences in the electron affinity (EA) → isobar suppression
- EAs for atomic anions reversed → not suitable
- $SrF_3^- ZrF_3^-$ system has right properties

0.8	selected l energ			
0.6		/		
0.4	unwanted isobar		isotop	e of
0.2	Isobai		inter	
0.0	6 0.8	1.0	1.2	1.4

Anion	EA (eV)
Sr ⁻	0.05206 ± 0.00006 [2]
Zr ⁻	0.427 ± 0.014 [3]
SrF ₃	> 3.6 [4]
ZrF ₃	< 2.3 [4]

- [2] Andersen et.al., Phys.Rev. A.,1997
- [3] Feigerle et.al., J. Chem. Phys., 1981
- [4] Eliades et.al., NIMB, 2015

SrF₃ molecule performance

- Added PbF₂ by weight to sample material of SrF₂
- Excellent SrF_3^- and poor ZrF_3^- formation [5] \rightarrow isobar suppression
- SrF_3^- ionization yield of 0.9% for samples with higher PbF_2 content

ILIAMS suppression and transmissions

- He+O₂ buffer gas without laser
 → suppression of 10⁵
- He+O₂ combined with 532 nm laser → Zr suppression of 10⁷
- Transmissions:

i) ILIAMS: 35%

ii) Accelerator: 23% (+3, 3 MV)

ILIAMS suppression and transmissions

- He+O₂ buffer gas without laser
 → suppression of 10⁵
- He+O₂ combined with 532 nm laser → Zr suppression of 10⁷
- Transmissions:

i) ILIAMS: 35%

ii) Accelerator: 23% (+3, 3 MV)

ILIAMS suppression and transmissions

- He+O₂ buffer gas without laser
 → suppression of 10⁵
- He+O₂ combined with 532 nm laser → Zr suppression of 10⁷
- Transmissions:

i) ILIAMS: 35%

ii) Accelerator: 23% (+3, 3 MV)

Results in-house made reference materials

- Overall ⁹⁰Sr detection efficiency is 0.4‰
- Blank level 90 Sr/Sr = (4.5 ± 3.2)×10⁻¹⁵ \rightarrow detection limit of < 0.1 mBq
- Improvement of previous AMS detection limit of 3 mBq [6]

Environmental samples

 First successful measurements of environmental samples

Environmental samples

 First successful measurements of environmental samples

