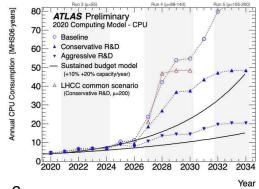
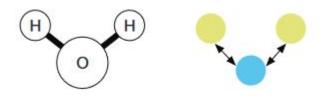

# TPU vs. GPU for GNN training


Xiangyang Ju

Lawrence Berkeley National Lab

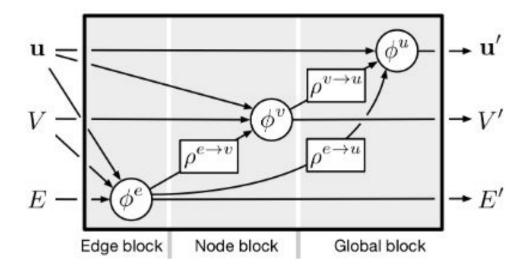
## Tracking at High-Luminosity LHC




- Each proton-proton collision contains ~10k tracks left by charged particles
- Each track on average has ~10 space points recorded by the detector
- The combinatorial complex of current track reconstruction algorithm grows quadratically as the number of collisions grows.
- New algorithm is needed.

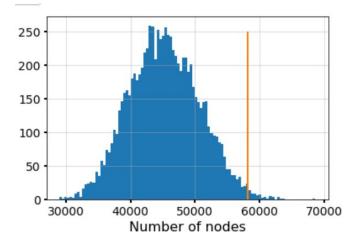


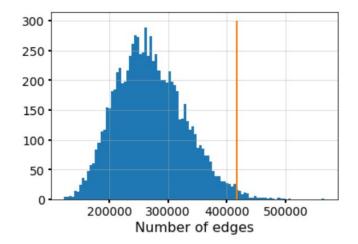
## A more technical review of the GNN


arXiv:1806.01261

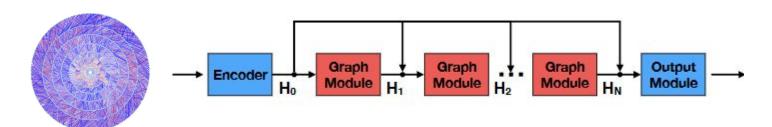


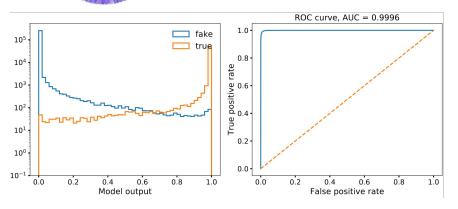
Graph contains nodes and edges, and node-, edge- and global-level attributes.


GNN are trainable functions operating on a graph.


Those functions are neural networks.




## Graph size


On average: 45,000 nodes and 250,000 edges.





#### **GNN-based solution**





Current study is based on a simplified detector geometry.

One epoch containing ~7800 events for training

With a threshold of 0.5, it achieves a precision of 97.5% and a recall of 98.6%.

Al accelerators in this study

- GPU V100 at NERSC Cori, each node has 40 skylake CPUs and 8 V100
- GPU A100 at google cloud
- TPU: us-central1-a, TPU-v3-8 and TPU-v2-32

|             |                      |                           |                                                                    | [\$/hour]                                                                                                                                            | power [W]                                                                                                                  |
|-------------|----------------------|---------------------------|--------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|
| Ividia V100 | 1                    | 14 (fp32)                 | 16                                                                 | 1.56                                                                                                                                                 | 250                                                                                                                        |
| Ividia A100 | 1                    | 19.5 (fp32)               | 40                                                                 | N/A                                                                                                                                                  | 250                                                                                                                        |
| TPU v2      | 32                   | 180*4=720                 | 8*32=256                                                           | 15.33                                                                                                                                                | 75*32=2400                                                                                                                 |
| TPU v3      | 8                    | 420                       | 16*8=128                                                           | 8                                                                                                                                                    | 75*8=600                                                                                                                   |
| 1           | vidia A100<br>TPU v2 | vidia A100 1<br>TPU v2 32 | vidia A100     1     19.5 (fp32)       TPU v2     32     180*4=720 | vidia A100       1       19.5 (fp32)       40         TPU v2       32       180*4=720       8*32=256         TPU v3       8       420       16*8=128 | vidia A100       1       19.5 (fp32)       40       N/A         TPU v2       32       180*4=720       8*32=256       15.33 |

arXiv:1907.10701 Google Cloud TPU Nvidia V100 datasheet In-Datacenter Analysis for TPU

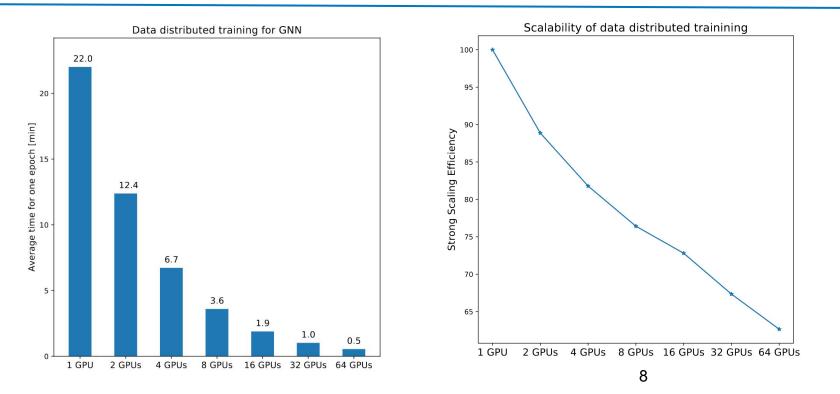
## Distributed training strategy

## Performing data parallel distributed training:

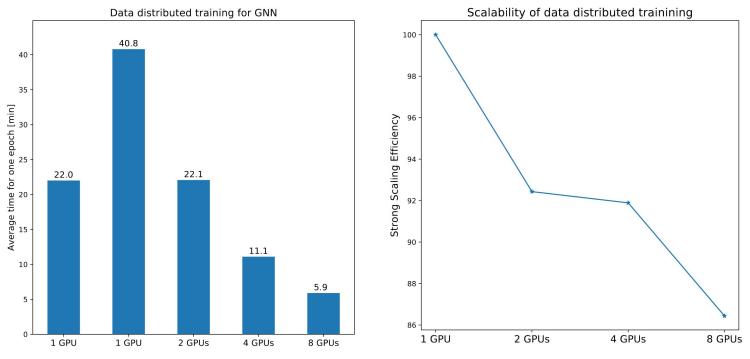
Same model is replicated to different devices (GPUs, TPUs), different data are sent to devices for training, gradients are averaged among devices to update the weights

**P1** 

 $P^2$ 


**P**3

arxiv:1802.09941

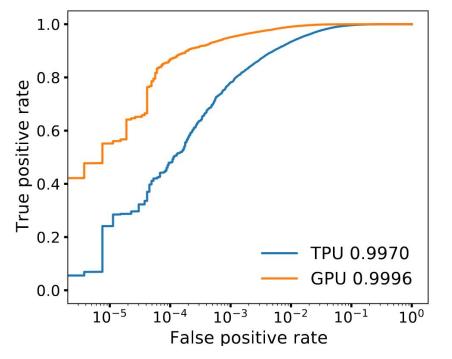

#### Two implementations:

- 1. Horovod
  - a. Good: MPI-based, HPC friendly
  - b. Bad: not work for TPU, need extra coding
- 2. Distributed strategy in TensorFlow
  - a. Good: same code runs on CPU, GPU, TPU. even IPU?
  - b. Bad: need same graphs size, cannot across nodes

### Distributed training for GPUs, with Horovod

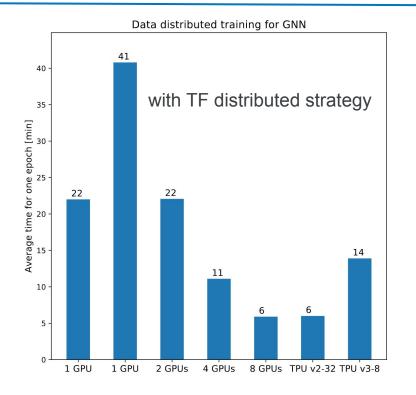


### Distributed training for GPUs, with TF distributed strategy




9

## Key metrics for compare TPUs with GPUs


- 1. Accuracy  $\rightarrow$  precision and recall on testing data
- 2. Latency  $\rightarrow$  time it takes to finish training for one epoch
- 3. Cost  $\rightarrow$  dollars per epoch
- Heat dissipation → energy cost per epoch. = thermal design watt times the time it takes to finish one epoch, assuming device 100% busy during the training,

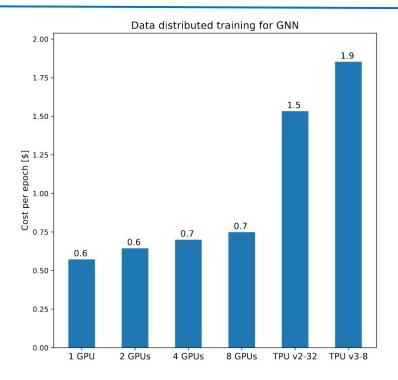
#### Accuracy

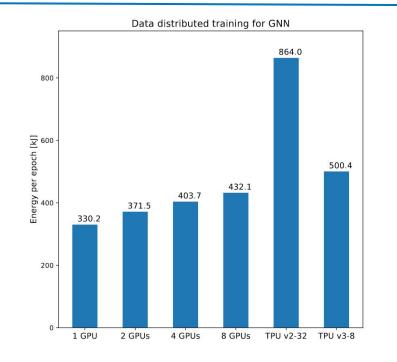


- Hyperparameters of the model when trained in GPU are tuned to have good performance. The learning rate is found particularly important.
- 2. No detailed hyperparameter tuning is done for TPU

#### Latency




- Padding graphs to the same size increases the training time by a factor of 2
- TPU v2-32 equals 8 GPUs and TPU v3-8 is better than 2 GPUs, worse than 4 GPUs


#### Latency

Data distributed training for GNN 22.0 20 with Horovod for GPUs Average time for one epoch [min] 15 13.9 12.4 10 -6.7 6.0 5 3.6 0 1 GPU 2 GPUs 4 GPUs TPU v2-32 TPU v3-8 8 GPUs

- 1. No padding required in Horovd,
- TPU v2-32 equals ~4 GPUs and TPU v3-8 is better than 1 GPUs, worse than 2 GPUs

#### Cost and heat dissipation





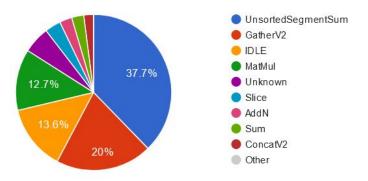
14

## Summary

| Device   | # of devices | Latency<br>[minutes] | Cost [\$] | Heat dissipation<br>[kJ] |
|----------|--------------|----------------------|-----------|--------------------------|
| GPU V100 | 1            | 22.0                 | 0.6       | 330                      |
|          | 2            | 12.4                 | 0.6       | 371                      |
|          | 4            | 6.7                  | 0.7       | 403                      |
|          | 8            | 3.6                  | 0.7       | 432                      |
| TPU v2   | 32           | 6.0                  | 1.5       | 864                      |
| TPU v3   | 8            | 13.9                 | 1.9       | 500                      |

## Profiling TPU v3-8 and GPU V100

| TPU v3-8                                                                                                                                                    |          | G                                                                                             | PU v100            |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-----------------------------------------------------------------------------------------------|--------------------|
| Performance Summary<br>Average Step Time<br>lower is better<br>$(\sigma = 87.5 ms)$<br>• Idle: 112.19 ms<br>• Input: 0.39 ms                                | 823.2 ms | Performance Summary<br>Average Step Time<br>lower is better<br>( $\sigma = 31.5 \text{ ms}$ ) | 169.2 ms           |
| Compute: 710.60 ms  Host Idle Time lower is better                                                                                                          | 98.2%    | TF Op Placement 1<br>• Host: 13.9%<br>• Device: 86.1%                                         |                    |
| TPU Idle Time<br>lower is better<br>FLOPS Utilization                                                                                                       | 13.6%    | Op Time Spent on Eager Execution (1)<br>lower is better<br>• Host: 0.1%<br>• Device: 0.0%     | GPU idle time 10%. |
| <ul> <li>(higher is better, why two numbers?)</li> <li>Utilization of TPU Matrix Units: 2.3%</li> <li>Compared to Program's Optimal FLOPS: 28.1%</li> </ul> |          | Device Compute Precisions<br>out of Total Device Time<br>• 16-bit: 0.0%                       |                    |
| Memory Bandwidth Utilization                                                                                                                                | 28.1%    | • 32-bit: 100.0%<br>FLOPS Utilization:                                                        | 30% (fp32 only)    |
| Run Environment Number of Hosts used: 1                                                                                                                     |          |                                                                                               |                    |
| Device type: TPU v3<br>Number of device cores: 8 (Replica count = 1, num cores per replica = 1)                                                             | I        | 16                                                                                            |                    |

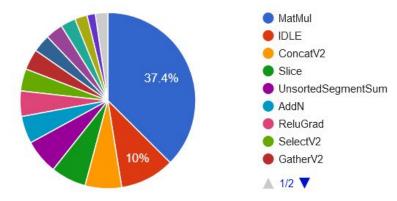

Number of device cores: 8 (Replica count = 1, num cores per replica = 1)

## Profiling [continued]

TPU v3-8

#### ON DEVICE: TOTAL SELF-TIME (GROUPED BY TYPE)

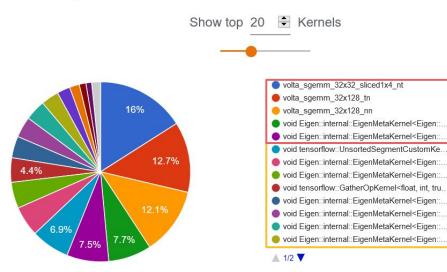
(in microseconds) of a TensorFlow operation




Most time spent in aggregating information between nodes and edges

#### GPU v100

#### ON DEVICE: TOTAL SELF-TIME (GROUPED BY TYPE)

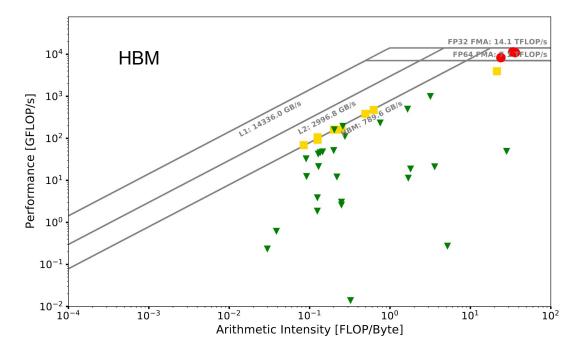

(in microseconds) of a TensorFlow operation



Most time spent in matrix multiplication

## Profiling GPU kernels

#### Top 20 Kernels with highest Total Duration

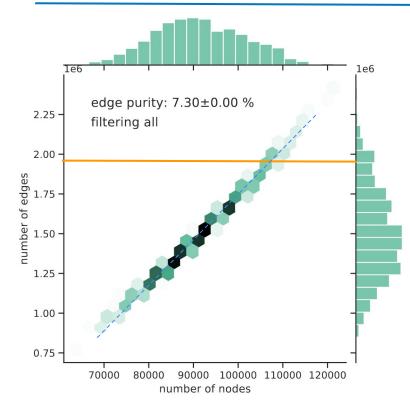



Top 5 kernels are mostly matrix multiplications and sweepers, taking **66%** of total computing time.

Top 5 to 20 kernels are led by the message passing operation: UnsortedSegment(sum)

### Analyze with roofline model

With kind help from Yunsong Wang




Red: the top 5 kernels Yellow: the top 5 to 20 kernels Green: the rest

Message passing Ops are limited by bandwidth

Profiling results for L1/L2 and overall are in backup.

## **GNN for High-Luminosity LHC**



On average the number of nodes increases from 45k to 90k, the number of edges increases from 250k to 1500k.

Using 3300 training events, each epoch takes about 30 minutes. It would not be completely unreasonable to have 10k training events, in that case, it would take 1 hour to train one epoch.

The memory consumption reaches the limitation of A100.

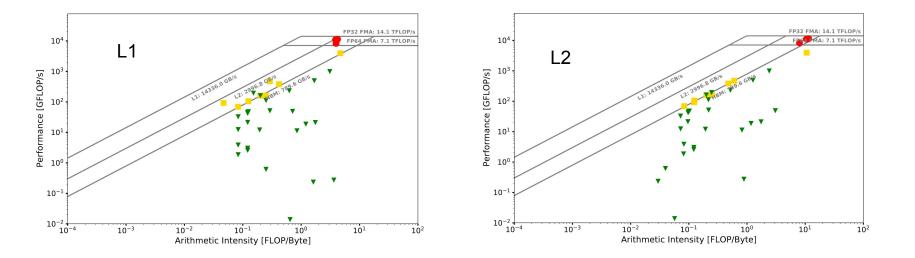
## Future promising studies

Mixed precision looks promising in reducing the computing time and memory consumption. The following results on mixed precision represent an ideal scenario, which in practice do not work yet.

|                   | Tensor<br>dtype | time per<br>event<br>[ms] | Memory<br>usage<br>[GiB] |
|-------------------|-----------------|---------------------------|--------------------------|
| Single precision  | Float 32        | 169                       | 9.81                     |
| Half<br>precision | Float 16        | 120                       | 4.9                      |

NVIDIA Tensor Core in V100 only supports half precision computations, however, it carries ~80% of total computing capability.




## Summary

- Graph Neural Networks are a powerful tool for track reconstruction
- With our GNN configuration GPUs perform better than TPUs according to the three metrics described.
  - Distributed training strategy in TF partly to blame
- Next steps:
  - Study mixed precision and other optimizations
  - IPU


## GPU V100 and A100

| GPU Architecture  | NVIDIA Volta      | NVIDIA Ampere         |
|-------------------|-------------------|-----------------------|
| NVIDIA CUDA Cores | 5120              |                       |
| FP64 [TFLOPS]     | 7                 | 9.7, TensorCore: 19.5 |
| FP32 [TFLOPS]     | 14                | 19.5, TF32: 312       |
| GPU Memory        | 16 GB HBM2        | 40 GB HBM2            |
| GPU clock         | 1245 MHz          | 765 MHz               |
| Memory bandwidth  | 900 GB/sec        | 1.6 TB/sec            |
| PCle              | 32 GB/sec (Gen3)  | 64 GB/sec (Gen4)      |
| NVLink            | 300 GB/sec (Gen2) | 600 GB/sec (Gen3)     |

## Analyze profiling with roofline model



## Analyze profiling with roofline model

