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LUMIN
What it is, and recent addictions
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MACHINE LEARNING IN HEP

• Many analyses and experiment software 
now aim to benefit from using machine 
learning approaches

• Often necessary in order to achieve 
competitive performance

• ML is now an integral part of HEP

• But! Hardware and timing for model 
training can be a limitation for 
analysis-level researchers

3Identified in 2020 update of the European Strategy for 
Particle Physics as essential R&D

https://indico.cern.ch/event/924500/#sc-23-1-presentation-of-the-dr
https://indico.cern.ch/event/924500/#sc-23-1-presentation-of-the-dr


MODERN DEEP-LEARNING TECHNIQUES
• Strong, 2020 studied the impact of new 

DNNs techniques on performance and 
timing using benchmark HEP dataset 
(HiggsML)

• HEP-specific data augmentation
• 1cycle learning-rate scheduling
• New architecture, activation function, etc.

• Solution matched top performance, but 
trained in 14 minutes on a laptop CPU

• 86% effective speedup over 1st-place GPU 
(accounting for hardware improvements)

• Competitive performance achievable by 
analysis-level researchers 4

https://iopscience.iop.org/article/10.1088/2632-2153/ab983a
https://www.kaggle.com/c/higgs-boson
https://arxiv.org/abs/1803.09820


LUMIN
• LUMIN is a PyTorch wrapper library 

designed primarily for HEP
• Drop-in implementations of techniques 

and methods
• Modular network design
• HEP-specific data augmentation
• Support for matrix & tensor data
• Model & data interpretation

• Links:
• Docs
• Github
• Colab examples
• Issues -  contributions welcome!
• PyPI

https://lumin.readthedocs.io/en/stable/
https://github.com/GilesStrong/lumin
https://github.com/GilesStrong/lumin#examples
https://github.com/GilesStrong/lumin/issues?q=is%3Aissue+is%3Aopen+sort%3Acreated-asc
https://pypi.org/project/lumin/


USAGE

• LUMIN can be used to train neural networks for supervised classification, 
regression, and adversarial tasks using:
• Columnar data (features in columns - events in rows)

• And/or matrix data with arbitrary dimensions (i.e. 1D of 4-vectors, 2D & 3D grids 
of data, et cetera)

• Trained models can be exported to ONNX and TensorFlow
• Can run in CMSSW via Tensorflow interface, see e.g cms_hh_tf_inference
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https://github.com/riga/CMSSW-DNN
https://github.com/GilesStrong/cms_hh_tf_inference


AUTOMATED FEATURE SELECTION

• Powerful & tunable methods to:
• Safely filter clusters of monotonically related features; 

auto_filter_on_linear_correlation
• Select features based on frequency of importance; repeated_rf_rank_features

• Safely filter features based on mutual dependence; 
auto_filter_on_mutual_dependence

• Very useful for wide data, e.g.:
• Predictive analytics with >200 features and no domain theory

• CMS di-Higgs search with > 100 high-level features 7

https://lumin.readthedocs.io/en/stable/lumin.optimisation.html#lumin.optimisation.features.auto_filter_on_linear_correlation
https://lumin.readthedocs.io/en/stable/lumin.optimisation.html#lumin.optimisation.features.repeated_rf_rank_features
https://lumin.readthedocs.io/en/stable/lumin.optimisation.html#lumin.optimisation.features.auto_filter_on_mutual_dependence
https://colab.research.google.com/github/GilesStrong/lumin/blob/v0.7.2/examples/Feature_Selection.ipynb


FEATURE SELECTION: CLUSTERING & REMOVAL OF 
CORRELATED FEATURES
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Cluster monotonically 
related features

Try to remove features 
without loss of 
performance



FEATURE SELECTION: REMOVAL OF MUTUALLY 
DEPENDENT FEATURES
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Train regressors for each 
feature

Try to remove 
predictable without loss 
of performance



HIGHER-ORDER DATA
• Early versions of LUMIN just supported 

columnar data, i.e. for analysis-level 
research

• Now can run models over higher-order 
data for reconstruction algorithms, e.g.:

• 1D series of 4-vectors with 
RNNs/CNNs/GNNs

• 2D jet images with CNNs
• 3D detector volumes with CNNs
• Users can provide their own custom 

architectures 
• Flat data can be passed in parallel to 

high-order data using MultiHead
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3D data example: energy deposits in a calorimeter,
Source: Dorigo, Kieseler, Layer, Strong, 2020

https://lumin.readthedocs.io/en/stable/lumin.nn.models.blocks.html#lumin.nn.models.blocks.head.MultiHead
https://colab.research.google.com/github/GilesStrong/lumin/blob/v0.7.2/examples/RNNs_CNNs_and_GNNs_for_matrix_data.ipynb
https://arxiv.org/abs/2008.10958


CALLBACKS IMPROVEMENTS
• Re-written model training loop to include 

more interjection points for callbacks
• Allows for more possibilities and greater 

control of model training

• New stateful training means that all 
aspects of training (data, other callbacks, 
etc.) are accessible by each callback:

• Each callback is aware of every other 
callback

• Can modify all aspects of training
• Callbacks can create new callbacks
• Callbacks can manually compute losses 

rather than using a basic loss function

• Training start & end

• Epoch start & end

• Fold start & end

• Batch start & end

• After forwards pass

• Before & after backwards pass

• Before & after prediction
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LEARNING TO PIVOT

• Louppe, Kagan, Cranmer 2016

• An adversarial model tries to predict 
parameters based on outputs of main 
model

• Forces main model to become invariant 
to parameters

• Implemented as callback in LUMIN
• Can be dropped in to standard training 

loop without having to write a special 
adversarial loop
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Pivot training forces classifier to become 
resilient to pile-up jets

https://papers.nips.cc/paper/2017/hash/48ab2f9b45957ab574cf005eb8a76760-Abstract.html
https://colab.research.google.com/github/GilesStrong/lumin/blob/v0.7.2/examples/Learning_To_Pivot.ipynb


PYTORCH_INFERNO
INFERNO overview and new implementation
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INFERNO
• de Castro & Dorigo 2018

• Directly optimise DNN for stat. Inf.
• DNN output is binned summary statistic

• Softmax output - can hard-assign after 
training

• Loss is inversely proportional to the 
uncertainty on parameter of interest

• Computed from inverted Hessian of 
likelihood w.r.t. parameters

• Includes nuisances on both input 
features & normalisation

• I.e. DNN encouraged to become sensitive 
to PoI and resilient to nuisances 14

Source: paper

https://www.sciencedirect.com/science/article/pii/S0010465519301948


INFERNO BENEFIT - TOY EXAMPLE
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Binned output 
of binary 
cross-entropy 
classifier

Hard-assigned 
output of 
INFERNO 
model

Negative 
log-Likelihood on PoI 
under systematic 
uncertainties

Width (uncertainty) 
decreased for 
INFERNO 



INFERNO SUMMARY

1. Modify input data by nuisances set to zero (nuisances are tensors with 
gradient)

2. Forwards pass through network

3. Compute signal & bkg. shapes and normalise by rates

4. Compute profile log-likelihood (NLL) at Asimov count (sig+bkg and no 
nuisances)

5. Compute hessian of NLL w.r.t nuisances and PoI

6. Loss is the PoI element of the inverted hessian ((∇2NLL)-1)PoI,PoI 16



IMPLEMENTATION

 Requirements

• Either:
• Access to input data before forward pass 

(paper version)
• Or access to pre-modified data for 

up/down systematic shifts (interpolation 
approximation version)

• Access to model when computing loss 
(might be avoidable in certain tensor libs)

• Need to remove gradient due to 
nuisances on predictions
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Difficulties

• Losses normally expected to be a function 
that receives only predictions and targets

• Most callbacks and recorders expect loss 
to be averaged over data in batch (i.e. 
non-reduced element-wises losses exist), 
but INFERNO is not an averaged quantity. 

https://gilesstrong.github.io/website/statistics/hep/inferno/2021/02/02/inferno-5.html
https://gilesstrong.github.io/website/statistics/hep/inferno/2021/02/02/inferno-5.html


IMPLEMENTATION

• Implement as a callback
• Persistent class with access to the DNN

• on_batch_begin - modify data before 
forward pass

• on_forward_end - compute loss and 
manually set value

• Requires training loop to be:
• Aware of loss-setting-callbacks
• Fine-grained enough (e.g. Keras 2 only 

has on_batch_begin on_batch_end 
(unsure about tf.keras))
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Modify data to 
include 
nuisances

Compute loss 
and set 
self.loss_val



PYTORCH INFERNO
• Provides minimal framework for:

• Training & applying PyTorch DNNs
• Plus necessary callback system

• Computing profile likelihoods for inferring 
parameters of interest under uncertainty

• Successfully reproduces paper results

• Introduces an approximation method 
which works directly on ±1 sigma shifted 
data

• Links:
• Docs
• Github
• PyPI
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https://gilesstrong.github.io/pytorch_inferno/
https://github.com/GilesStrong/pytorch_inferno
https://pypi.org/project/pytorch-inferno/


DISCUSSION
• Main aim of library to demonstrate non-disruptive implementation of 

INFERNO
• LUMIN (compatible) version foreseen

• Tensorflow implementations:
• Tensorflow 1: paper-inferno - Pablo de Castro

• Custom framework

• Loss computed via custom training loop

• Tensorflow 2: inferno - Lukas Layer
• Single Jupyter Notebook (runnable on Colab)

• Loss computed via custom training loop
20

https://github.com/pablodecm/paper-inferno
https://github.com/llayer/inferno


BLOG SERIES

• 5-part series on INFERNO and (param inference in HEP)

• Introduces & uses PyTorch package

• Parts 1 & 2 - intro to param inference

• Part 3 - ML classifier for summary stat.

• Part 4 - INFERNO for summary stat.

• Part 5 - Approximating INFERNO for easier application 
21

https://gilesstrong.github.io/website/statistics/hep/inferno/2020/12/04/inferno-1.html
https://gilesstrong.github.io/website/statistics/hep/inferno/2020/12/11/inferno-2.html
https://gilesstrong.github.io/website/statistics/hep/inferno/2020/12/18/inferno-3.html
https://gilesstrong.github.io/website/statistics/hep/inferno/2020/12/31/inferno-4.html
https://gilesstrong.github.io/website/statistics/hep/inferno/2021/02/02/inferno-5.html


SUMMARY

• LUMIN is a powerful library which is 
continuing to grow and develop

• Provides convenient access to recently 
published methods and ideas

• Already used in a diverse range of 
research tasks

• Would benefit greatly from user feedback
• And more contributors!
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• INFERNO has the potential to greatly 
improve HEP measurements

• And other domains

• But needs to be tested out in a range of 
real-world problems

• E.g. Lukas Layer is currently testing it on 
CMS open-data

• Can be tricky to set up, but 
implementations now exist for both 
Tensorflow 1 & 2, and PyTorch



BACKUP SLIDES
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PROCESS - ONE UPDATE STEP

1. Minibatch: x - inputs, y - targets

2. Cache tensor of nuisances at nominal values 
(zero)

3. Modify inputs according to shape nuisances: 
x←x+nuisances
a. E.g. x1←x1+0, x2←x2*(x2+0)/x2,
b. Nuisances don’t change input values but allow 

gradients to be computed
c. Instead add “the potential to be modified”

4. Pass x through NN (with softmax)

5. Predictions yp: probabilities per bin/class

6. Index signal & background using y
a. Sum counts per bin → sig & bkg shapes
b. Detach/stop gradient on xbkg and pass 

through NN → Asimov bkg template
i. Ideally remove gradient from already 

computed bkg shape, but depends on 
tensor library

7. Compute stats.:
a. texp = Ns· shapesig + Nb· shapebkg

b. tasimov = Ns,true· shapesig + Nb,true· shapebkg,asimov
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PROCESS - ONE UPDATE STEP
8. Build Poisson likelihood:

a. NLL = -Pois(texp).log_prob(tasimov).sum()
b. Ns, Nb, and shape nuisances already at 

nominal values, NLL minimised, profiling 
unnecessary

c. Add constraints on nuisances if present

9. Compute Hessian of NLL w.r.t. PoI and 
nuisances: ∇2NLL (2D square matrix),
a. N.B at minimum, ∇NLL = 0
b. Hessian diagonal = effect of each param on 

NLL
c. Hessian off-diagonal (symmetric) = interplay 

between params

10. Invert Hessian & return element 
corresponding to PoI as loss value
a. Want PoI Hessian element to be as large as 

possible: NLL narrower in PoI axis
b. But want nuisance elements to be as small as 

possible: NLL flatter in nuisance axes
c. Inversion “mixes” elements in Hessian
d. Minimising PoI element of inverted Hessian 

leads to desired result

11. Backprop loss value and update weights as 
normal


