IMPROVEMENTS TO LUMIN
& INFERNO IN PYTORCH

Giles Strong
IML Meeting, Online - 16/03/21
giles.strong@outlook.com

twitter.com/Giles_C_Strong
gilesstrong.github.io/website

github.com/GilesStrong

mailto:giles.strong@outlook.com
https://twitter.com/Giles_C_Strong
https://gilesstrong.github.io/website/
https://github.com/GilesStrong

LUMIN

What it is, and recent addictions

® Many analyses and experiment software

now aim to benefit from using machine
learning approaches

® Often necessary in order to achieve
competitive performance

® MLis now an integral part of HEP

¢ But! Hardware and timing for model

training can be a limitation for
analysis-level researchers

MACHINE LEARNING IN HEP

Empeang,..,‘eg) 2020 Strategy Statements

4. Other essential scientific activities for particle physics

Compufmg and software infrastructure
There is a need for strong community-wide coordination for computing and software R&D activities, and for the
development of common coordinating structures that will promote coherence in these activities, long-term planning
and effective means of exploiting synergies with other disciplines and industry

+ Asignificant role for artificial intelligence is emerging in detector design, detector operation, online data processing
and data analysis

+ Computing and software are profound R&D topics in their own right and are essential to sustain and enhance particle
physics research capabilities

* More experts need to be trained to address the essential needs, especially with the increased data volume and
complexity in the upcoming HL-LHC era, and will also help in experiments in adjacent fields.

d) Large-scale data-intensive software and computing infrastructures are an essential ingredient to particle physics research
programmes. The community faces major challenges in this area, notably with a view to the HL-LHC. As a result, the
software and computing models used in particle physics research must evolve to meet the future needs of the field.

The community must vigorously pursue common, coordinated R&D efforts in collaboration with other fields of science and
industry to develop software and computing infrastructures that exploit recent advances in information technology and data
science. Further development of internal policies on open data and data preservation should be encouraged, and

an adequate level of resources invested in their implementation.

19/06/2020 CERN Council Open Sessio 24

Identified in 2020 update of the European Stratesy far
Particle Physics as essential R&D

https://indico.cern.ch/event/924500/#sc-23-1-presentation-of-the-dr
https://indico.cern.ch/event/924500/#sc-23-1-presentation-of-the-dr

MODERN DEEP-LEARNING TECHNIQUES

¢ Strong, 2020 studied the impact of new

DNNs techniques on performance and
timing using benchmark HEP dataset

HiggsML TR |
() . . Our solution | 1%t place 2°¢ place 34 place
® HEP-specific data augmentation
)) Method 10 DNNs 70 DNNs Many BDTs 108 DNNs
e | cycle learning-rate scheduling Train-time (GPU) | 8 min 12h N/A N/A
. . o . Train-time (CPU) | 14min 35h 48h 3h
New architecture, activation function, etc. Test-time (GPU) | 153 L N/A N/A
® Solution matched top performance, but Test-time (CPU) | 3min 77 e 20 min
. . . Score 3.806 £+ 0.005 | 3.80581 3.78913 3.78682
trained in 14 minutes on a laptop CPU

86% effective speedup over |*-place GPU
(accounting for hardware improvements)

Comepetitive performance achievable by
analysis-level researchers

https://iopscience.iop.org/article/10.1088/2632-2153/ab983a
https://www.kaggle.com/c/higgs-boson
https://arxiv.org/abs/1803.09820

LUMIN
® LUMIN is a PyTorch wrapper library LM - e eaming an e

H 1 1 GilesStrong bumb version 00c579f 21 hours ago D) 635 commits science ecosystem for high-energy
designed primarily for HEP — ‘ e

B .vscode bound fastcore requirements 7 days ago
science machine-learning statistics

® Drop-in implementations of techniques =~ = «= bumt version nbors e | qamepai) () G

t W examples Tests pass 21 hours ago hep
nd method
a ethods B lumin bumb version 21 hours ago 0 Readme
Y M d I k d . O .gitignore Adding pivot training 9 days ago 5 Apache-2.0 License
odular networ esign
[.readthedocsyml style test 2 years ago
Y H EP f- d . [CHANGES.md bumb version 21 hours ago Releases 15
-Speciric ata augmentatlon
[CITATION.md Adding citation 2 years ago © v0.7.2 - All your batch are ...
21 hours ago
° S f . & d [CONTRIBUTING.md Required changes done in the contributing guide 8 months ago
upport for matrix & tensor data
[LICENSE bound fastcore requirements 7 days ago
° M d I & d H H [MANIFEST.in Include missing files for sdist 10 months ago
ode ata inte rp retation Packages
[README.md bumb version 21 hours ago
No packages published
() H [abbrmd Docs for mat heads 15 months ago Publish your first package
Links:
* O build.md Update examples 21 hours ago
° D [requirements.txt bound fastcore requirements 7 days ago Contributors 3
OCS [setup.cfg Install stuff 2 years ago ‘ GilesStrong
° G . h b [setup.py Corrections from pypi test 6 months ago |:|:| Kiryteo Ashwin Samudre
ithu
t— thatch Tim Hatch
README.md V4

° Colab examples

python 3.6 | 3.7 | 3.8 | license |Apache Software License 2.0 DOI | 10.5281/zen0d0.4322959

Languages

Issues - contributions welcome! LUMIN: Lumin Unifies Many Improvements for Networks P———

PyP!

https://lumin.readthedocs.io/en/stable/
https://github.com/GilesStrong/lumin
https://github.com/GilesStrong/lumin#examples
https://github.com/GilesStrong/lumin/issues?q=is%3Aissue+is%3Aopen+sort%3Acreated-asc
https://pypi.org/project/lumin/

USAGE

® LUMIN can be used to train neural networks for supervised classification,
regression, and adversarial tasks using:

® Columnar data (features in columns - events in rows)

® And/or matrix data with arbitrary dimensions (i.e. ID of 4-vectors, 2D & 3D grids
of data, et cetera)

® Trained models can be exported to ONNX and TensorFlow

® Can runin CMSSW via Iensorflow interface, see e.g cms_hh_tf inference

https://github.com/riga/CMSSW-DNN
https://github.com/GilesStrong/cms_hh_tf_inference

AUTOMATED FEATURE SELECTION

® Powerful & tunable methods to:

¢ Safely filter clusters of monotonically related features;
auto_filter_on_linear_correlation

® Select features based on frequency of importance; repeated rf rank features

® Safely filter features based on mutual dependence;
auto_filter _on_mutual_dependence

® Very useful for wide data, e.g.:

® Predictive analytics with >200 features and no domain theory

CMS di-Higgs search with > 100 high-level features

ZC Open in Colab

https://lumin.readthedocs.io/en/stable/lumin.optimisation.html#lumin.optimisation.features.auto_filter_on_linear_correlation
https://lumin.readthedocs.io/en/stable/lumin.optimisation.html#lumin.optimisation.features.repeated_rf_rank_features
https://lumin.readthedocs.io/en/stable/lumin.optimisation.html#lumin.optimisation.features.auto_filter_on_mutual_dependence
https://colab.research.google.com/github/GilesStrong/lumin/blob/v0.7.2/examples/Feature_Selection.ipynb

FEATURE SELECTION: CLUSTERING & REMOVAL OF

CORRELATED FEATURES
| s

hl_dphi_hbb_httvis
hi_twist_hbb_httvis

L — hl_deta_hbb_httvis

I—: hl_deta_hbb_htt
hi_twist_hbb_htt

hl_costh_eta_ﬁ _htt

Cluster monotonically

hl_costheta_t0_htt_vis

hl_costheta_t1_htt_vis re I ated featu res
t0_E

hl_costheta_t0_htt

t 0_mass
S BiMass Try to remove features

| hl_dR_I0_t1_boosted_htt

hi_defa_{0_ {1 without loss of

hl_dR_I0_t1_boosted_httvis
—L “twist_{0_t1 - performance

T minJetPT

nJets
nBJets

nTaulJets
hl_phi1

hl_phi1_vis
[meanJetEta

| 1 hl_costheta_star
L hl_costheta_star_vis

— hl_phi2_vis

L hi phi2

T Y a7 05 55 Checking set: ['t_0 mT', 'hl dphi t0_mPT']

Distance (1 - |[Spearman's Rank Correlation Coefficient]) [S R S T —— +
| Removed | O0OB Score | Val Score |
e e L S S o e +
| None | 0.901+0.005 | 0.902+0.002 | 8
| t 0 mT | 0.899%0.004 | 0.901+0.002 |
| hl dphi_t0_mPT | 0.902+0.005 | 0.903%0.002 |
e e e L I o e +

Dropping hl dphi_t0_mPT

FEATURE SELECTION: REMOVAL OF MUTUALLY
DEPENDENT FEATURES

-1.0
hi_dphi_httvis_mPT 48 x 050 0.04 0.22 054 0.05
h_tt_mass x 069 022 0.10 0.05 012
h_bb_mass § x 0.08.08.49 0.30.24 0.07
hi_top_0_mass 8¢ 004 x 01037 0.04 0.08.00.08 0.04
h_tt_vis_mass 98¢ x 006 003 023
hl_diH_reduced_mass $:8% 0.03x0.78 0.30 017 0.06
hl_diH_mass_vis 0.66.06.2D.57 x
h_tt_vis_mT 4 13 x 0.09 0.16 0.76
hi_deta_t0_t1 g 0.27 x 012 0.05 019 0.65 0.76
t1 mT{ o011 003 1 «x 0.66.10 0.15
hi_dR_b0_b1 ¢ 0.03 x0.24 018 0.10
hl_dR_b0_b1_x_h_bb_pT 003 020x 0.08
hl_dR_I0_t1_x_h_tt_pT 476.2829 0.07 x 009 017 0.09
hl_p_zetavisible 014 x b 02006 0.04 0.08
hi_dphi_hbb_httvis 48669 x 004 a72 d86
hl_costheta_mpt_hbb ¢ 0.03 021 x 0.05 0.10 081 0.08
hl_p_zeta ¢:89.30 0.03 o0.0488 x 017 0.05
tomT 484 005 00803 8 os1 o003 x 0.1D.04 0.8
hl_dphi_t0_t1 d 0.26 0.05 a8 o003 «x 0.46
hl_costheta_mpt_htt 4. 031 x
njets g x0.70.03 0.04
eVis { 052x 011
hl_dR_hbb_htt 4.7 013 0.05 0.38 x o0.2088
hi_deta_b0_b1 § 0.79.18 x 0.07
hl_dR_I0_t1_boosted_httvis 012 x o.odp
hi_dphi_htt_mPT 0.36 x 0.15
hi_dphi_hbb_mPT ¢ 0.08 01873 057 0.28x
meanjetMass 4.60 0.06 0.08.10 x 005 061
h tt mT 48 % 011 0.09 x
b 1_mass 031-+—% 003 034
hl_dR_|0_t1_boosted_htt ¢ 081 0.14 030 0.21 029 x
hi_twist_t0_t1 056 068 029 x
hl_top_1_mass ¢ 0.26 01055 x 012
b_0_mass §.63 0.08.28 0.59 x
b1E{ 0.54 0.06 0.11 014 010 «x
- - i i i i i i i i i i i i i i T i i i i i i i i i i i i i i 1 i i i i i
S P S E eSS EgSET L s gETF Y o
¢ SEEELEy 8 ge s’ ES NSy T 9o E EEL L5108 £
Fougotgnid Sl SIs a8 OsE T FISESTHIE gl
FESIFIENEY SNNYE LGS T2l FFLSE <SS
& SESEey 2Ny 2F JS5§85E SIS
< =lc'a Qo & S BNy ~IS =
Q - Nl 1QERE & <10 I
© ' S35 g o o/
= s g T'C =~/ ! ~
=’ S & < S g
= g =
=/

Train regressors for each

A feature

Try to remove

predictable without loss

of performance

'h_tt_mT',

Checking ['hl_twist_tO0_t1', 'hl_dR 10_tl_boosted htt',

| Removed | 00B Score | val Score |
+ + + +
None	0.935:0.0008	0.934%0.0004
hl twist t0_t1	0.9349£0.0006	0.9339%0.0002
hl_dR 10 _t1 boosted htt	0.935%0.0005	0.93410.0002
h_tt_mT	0.934:0.0006	0.93370.0005
hl_dphi_hbb_mPT	0.9348£0.0006	0.9339%0.0006
+ + + +

Dropping hl_dR_10_tl_boosted htt

"hl_dphi_hbb mPT']

19 predictable features found to pass mutual dependence threshold of 0.8

Checking ['hl_dphi_htt_mPT', 'hl dphi tO_t1', 't_0_mT',
+ + + +
| Removed | 00B score | val score |
+ + + +
None	0.934:0.0009	0.9344%0.0006
hl_dphi htt mPT	0.9341%0.0003	0.9343%0.0002
hl dphi t0_t1	0.9347£0.0003	0.9344%0.0006
t_0_mT	0.9338£0.0006	0.933840.0006
[hl p zeta	0.9348£0.0006	0.9345%0.0002
hl_dphi_hbb_httvis	0.9346%0.0007	0.9344%0.0003

+ + +

Dropping hl_p_ zeta

'hl_p_zeta',

'hl_dphi_hbb_httvis']

ZC Open in Colab

HIGHER-ORDER DATA

® Early versions of LUMIN just supported

columnar data, i.e. for analysis-level
research

® Now can run models over higher-order 40
data for reconstruction algorithms, e.g.: X o
¢ ID series of 4-vectors with 0 ~E
RNNs/CNNs/GNNs 20
2D jet images with CNNs —40
3D detector volumes with CNNs -60
2000

Users can provide their own custom
architectures

Flat data can be passed in parallel to
high-order data using MultiHead

X 20 250
[’Tlm] 40 0

60 10

3D data example: energy deposits in a calorimeter,
Source: Dorigo, Kieseler, Layer, Strong, 2020

https://lumin.readthedocs.io/en/stable/lumin.nn.models.blocks.html#lumin.nn.models.blocks.head.MultiHead
https://colab.research.google.com/github/GilesStrong/lumin/blob/v0.7.2/examples/RNNs_CNNs_and_GNNs_for_matrix_data.ipynb
https://arxiv.org/abs/2008.10958

CALLBACKS IMPROVEMENTS

Re-written model training loop to include
more interjection points for callbacks

¢ Allows for more possibilities and greater
control of model training

New stateful training means that all

aspects of training (data, other callbacks,
etc.) are accessible by each callback:

® Each callback is aware of every other
callback

Can modify all aspects of training
Callbacks can create new callbacks

Callbacks can manually compute losses
rather than using a basic loss function

Training start & end

Epoch start & end

Fold start & end

Batch start & end

After forwards pass

Before & after backwards pass

Before & after prediction

11

® Louppe, Kagan, Cranmer 2016

¢ An adversarial model tries to predict

parameters based on outputs of main
model

e Forces main model to become invariant
to parameters

® Implemented as callback in LUMIN

Can be dropped in to standard training
loop without having to write a special
adversarial loop

(92}
=
<

ZC Open in Colab

LEARNING TO PIVOT

—— baseline_np_PU

— baseline_with_PU

—— pivot_10_batch

00 0.2 0.4 06 08
Threshold on f(X)

Pivot training forces classifier to become
resilient to pile-up jets

12

https://papers.nips.cc/paper/2017/hash/48ab2f9b45957ab574cf005eb8a76760-Abstract.html
https://colab.research.google.com/github/GilesStrong/lumin/blob/v0.7.2/examples/Learning_To_Pivot.ipynb

PYTORCH_INFERNO

INFERNO overview and new implementation

INFERNO

de Castro & Dorigo 2018

Directly optimise DNN for stat. Inf.

DNN output is binned summary statistic
¢ Softmax output - can hard-assign after
training
Loss is inversely proportional to the
uncertainty on parameter of interest
® Computed from inverted Hessian of
likelihood w.r.t. parameters
® Includes nuisances on both input
features & normalisation
l.e. DNN encouraged to become sensitive
to Pol and resilient to nuisances

compute via automatic differentiation

softmax

~ 99,00;

> log L A U
SIMULATOR OR NEURAL SUMMARY INFERENCE-AWARE
APPROXIMATION NETWORK STATISTIC LOSS

stochastic gradient update ¢'™! = @' + n(t)VaeU

Source: paper

14

https://www.sciencedirect.com/science/article/pii/S0010465519301948

INFERNO BENEFIT - TOY EXAMPLE

Binned Output 6 :ag:kaglround °°
 bi Backorunred_02.3 o5
of binar ety :
Yt 5 o . Negative
cross-entro v Je " -
classifier Py s 3., log-Likelihood on Pol
R - under systematic
£ o o
2 uncertainties
. [01
| I I [; | | | 00— Value =500, width = 27.74
0
0.0 0.2 04 06 08 1.0 20 30 40 50 60 70 80
Class prediction I
Hard-assigned
05 Signal — Value = 50.0, width = 19.08
Output Of :ztg:zﬁ:: _pred_-02_3 12

Background_pred_0.2_3

I N F E R N O o Background_pred_0_2.5 10
Background_pred_0_3.5

Width (uncertainty)
decreased for

08

1
N
Profiled A(—L)

0.2 I N . @ @ = | TN, T
04
01 & 02
| J 0.0
00
0 2 8 10 20 30 40 60 70 80

=8

4 6
Class prediction

INFERNO SUMMARY

. Modify input data by nuisances set to zero (nuisances are tensors with
gradient)

Forwards pass through network

Compute signal & bkg. shapes and normalise by rates

WS

Compute profile log-likelihood (NLL) at Asimov count (sig+bkg and no
nuisances)

Compute hessian of NLL w.r.t nuisances and Pol

Loss is the Pol element of the inverted hessian ((V>NLL)"), .

IMPLEMENTATION

Requirements Difficulties
¢ Either: ® Losses normally expected to be a function
* Access to input data before forward pass that receives only predictions and targets
(paper version) ® Most callbacks and recorders expect loss
® Oraccess to pre-modified data for to be averaged over data in batch (i.e.
up/down systematic shifts (Interpolation non-reduced element-wises losses exist),

approximation version)

but INFERNO is not an averaged quantity.

¢ Access to model when computing loss

(might be avoidable in certain tensor libs)

[7

Need to remove gradient due to
nuisances on predictions

https://gilesstrong.github.io/website/statistics/hep/inferno/2021/02/02/inferno-5.html
https://gilesstrong.github.io/website/statistics/hep/inferno/2021/02/02/inferno-5.html

® Implement as a callback

° Persistent class with access to the DNN

® on_batch_begin - modify data before
forward pass

® on_forward_end - compute loss and
manually set value
® Requires training loop to be:
® Aware of loss-setting-callbacks

® Fine-grained enough (e.g. Keras 2 only
has on_batch_begin on_batch_end
(unsure about tf.keras))

IMPLEMENTATION

def _fit_batch(self, x:Tensor, y:Tensor, w:Tensor) -> Nomne:
self.x,self.y,self.w = to_device(x,self.device),to_device(y,self.device),to_device(w,self.device)
for c in self.cbs: c.on_batch_begin()
self.y pred = self.model(self.x)
if self.state != 'test' and self.loss_func is not None:
self.loss_func.weights = self.w
self.loss_val = self.loss_func(self.y pred, self.y)
for c in self.cbs: c.on_forwards_end()

Modify data to

if self.state != 'train': return .

—— include
self.opt.zero_grad() .
for c in self.cbs: c.on_backwards_begin() nulsances

self.loss_val.backward()

for c in self.cbs: c.on_backwards_end()
self.opt.step()

for ¢ in self.cbs: c.on_batch_end()

Compute loss
and set
self.loss_val

18

PYTORCH INFERNO

° . .. ¥ master v ¥ 2branches © 3 tags Go to file About
PrOVIdeS m I nlmal frameWO rk for: PyTorch implementation of inference
8 Gilesstrong Add refs v 1addsa7 23 hours ago ‘O 74 commits aware neural optimisation (de Castro
) o . . and Dorigo, 2018
Training & applying PyTorch DNNs P new e Sdayssse hitps:jwwwsciencediectcom/scien

B docs — 23 Hiolrsiago ce/article/pii/S0010465519301948)

° Plus necessary callback system S— Rea tost o copeag @ Slesstrong.githubiopytoreh infr..

inferno pytorch

nbs Add refs 23 hours ago

¢ Computing profile likelihoods for inferring . .. e st doroungy | M e asns

likelihood-free-inference

pal"ameter‘s Of interest under uncertalnty [.devcontainer.json Initial commit 5 months ago 0 rendme
[.gitignore Docs 4 months ago & Toachess bl
pache-2.0 License
[] S f I I d I [CONTRIBUTING.md adding requirements 5 months ago
uccessfully reproduces paper results
[LICENSE Initial commit 5 months ago
Releases 3
[MANIFEST. Initial it 5 month
® Introduces an approximation method ’ v e O oa0s
Pp [Makefile First commit 5 months ago yesterday
. . + . . [README.md Add refs 23 hours ago + 2 releases
which works directly on %1 sigma shifted | -
locker-compose.yml Initial commit 5 months ago
d ata [pytorch_inferno.code-workspace First commit 5 months ago Packages
[settings.ini Add refs 23 hours ago No packages published
[] Li n ks: D setup.py Initial commit 5 months ago
Languages
README.md
° Docs . ;HFVIEV N.olebook 99.6%
—— ther 0.4%

Title

® Github
Ithu
Ve oyol NO20] python 3.6 137

3.8] license [Apache Software License 2.0 | D01 10.5281/zenodo.4597140 19
[]

PyPl PyTorch INFERNO

https://gilesstrong.github.io/pytorch_inferno/
https://github.com/GilesStrong/pytorch_inferno
https://pypi.org/project/pytorch-inferno/

DISCUSSION

Main aim of library to demonstrate non-disruptive implementation of
INFERNO

® LUMIN (compatible) version foreseen

Tensorflow implementations:

® Tensorflow |:paper-inferno - Pablo de Castro

® Custom framework

® Loss computed via custom training loop

® Tensorflow 2:inferno - Lukas Layer

¢ Single Jupyter Notebook (runnable on Colab)

® Loss computed via custom training loop

20

https://github.com/pablodecm/paper-inferno
https://github.com/llayer/inferno

BLOG SERIES

® 5-part series on INFERNO and (param inference in HEP)
® Introduces & uses PyTorch package

® Parts | &2 - intro to param inference

® Part 3 - ML classifier for summary stat.

® Part 4 - INFERNO for summary stat.
Part 5 - Approximating INFERNO for easier application

https://gilesstrong.github.io/website/statistics/hep/inferno/2020/12/04/inferno-1.html
https://gilesstrong.github.io/website/statistics/hep/inferno/2020/12/11/inferno-2.html
https://gilesstrong.github.io/website/statistics/hep/inferno/2020/12/18/inferno-3.html
https://gilesstrong.github.io/website/statistics/hep/inferno/2020/12/31/inferno-4.html
https://gilesstrong.github.io/website/statistics/hep/inferno/2021/02/02/inferno-5.html

SUMMARY

® INFERNO has the potential to greatly
® LUMIN is a powerful library which is improve HEP measurements

continuing to grow and develop e And other domains

® Provides convenient access to recently o
published methods and ideas

But needs to be tested out in a range of
real-world problems

® Already used in a diverse range of ® E.g Lukas Layer is currently testing it on
research tasks CMS open-data

® Would benefit greatly from user feedback Can be tricky to set up, but

And more contributors! implementations now exist for both
Tensorflow | & 2,and PyTorch

22

BACKUP SLIDES

PROCESS - ONE UPDATE STEP

Minibatch: x - inputs, y - targets

Cache tensor of nuisances at nominal values
(zero)

Modify inputs according to shape nuisances:
x«—Xx+nuisances
d. Eg xex+0,x,x,*(x,+0)/x,,

b. Nuisances don’t change input values but allow
gradients to be computed

C. Instead add “the potential to be modified”

Pass x through NN (with softmax)

5. Predictions Y probabilities per bin/class

6. Index signal & background using y
d. Sum counts per bin — sig & bkg shapes

b. Detach/stop gradient on Xiie and pass
through NN — Asimov bkg template

I. Ideally remove gradient from already
computed bkg shape, but depends on
tensor library

/. Compute stats.:
a. t o N - shapeSig +N,- shapebkg

€

b. t =N 'shapesig + N

asimov s,true

*shape

b,true bkg,asimov
24

PROCESS - ONE UPDATE STEP

8. Build Poisson likelihood:
d. NLL= -Pois(texp).Iog_prob(tasimov).sum()

b. N, N,, and shape nuisances already at

nominal values, NLL minimised, profiling
unnecessary

C. Add constraints on nuisances if present

9. Compute Hessian of NLL w.r.t. Pol and
nuisances: V 2NLL (2D square matrix),

a. N.Bat minimum, VNLL =0

b.

Hessian diagonal = effect of each param on
NLL

Hessian off-diagonal (symmetric) = interplay
between params

| 0. Invert Hessian & return element
corresponding to Pol as loss value

d. Want Pol Hessian element to be as large as
possible: NLL narrower in Pol axis

b. But want nuisance elements to be as small as
possible: NLL flatter in nuisance axes

0

Inversion “mixes” elements in Hessian
d. Minimising Pol element of inverted Hessian

leads to desired result

[1. Backprop loss value and update weights as

normal
25

