
IMPROVEMENTS TO LUMIN
 & INFERNO IN PYTORCH

Giles Strong
IML Meeting, Online - 16/03/21

giles.strong@outlook.com
twitter.com/Giles_C_Strong
gilesstrong.github.io/website

github.com/GilesStrong

mailto:giles.strong@outlook.com
https://twitter.com/Giles_C_Strong
https://gilesstrong.github.io/website/
https://github.com/GilesStrong

LUMIN
What it is, and recent addictions

2

MACHINE LEARNING IN HEP

• Many analyses and experiment software
now aim to benefit from using machine
learning approaches

• Often necessary in order to achieve
competitive performance

• ML is now an integral part of HEP

• But! Hardware and timing for model
training can be a limitation for
analysis-level researchers

3Identified in 2020 update of the European Strategy for
Particle Physics as essential R&D

https://indico.cern.ch/event/924500/#sc-23-1-presentation-of-the-dr
https://indico.cern.ch/event/924500/#sc-23-1-presentation-of-the-dr

MODERN DEEP-LEARNING TECHNIQUES
• Strong, 2020 studied the impact of new

DNNs techniques on performance and
timing using benchmark HEP dataset
(HiggsML)

• HEP-specific data augmentation
• 1cycle learning-rate scheduling
• New architecture, activation function, etc.

• Solution matched top performance, but
trained in 14 minutes on a laptop CPU

• 86% effective speedup over 1st-place GPU
(accounting for hardware improvements)

• Competitive performance achievable by
analysis-level researchers 4

https://iopscience.iop.org/article/10.1088/2632-2153/ab983a
https://www.kaggle.com/c/higgs-boson
https://arxiv.org/abs/1803.09820

LUMIN
• LUMIN is a PyTorch wrapper library

designed primarily for HEP
• Drop-in implementations of techniques

and methods
• Modular network design
• HEP-specific data augmentation
• Support for matrix & tensor data
• Model & data interpretation

• Links:
• Docs
• Github
• Colab examples
• Issues - contributions welcome!
• PyPI

https://lumin.readthedocs.io/en/stable/
https://github.com/GilesStrong/lumin
https://github.com/GilesStrong/lumin#examples
https://github.com/GilesStrong/lumin/issues?q=is%3Aissue+is%3Aopen+sort%3Acreated-asc
https://pypi.org/project/lumin/

USAGE

• LUMIN can be used to train neural networks for supervised classification,
regression, and adversarial tasks using:
• Columnar data (features in columns - events in rows)

• And/or matrix data with arbitrary dimensions (i.e. 1D of 4-vectors, 2D & 3D grids
of data, et cetera)

• Trained models can be exported to ONNX and TensorFlow
• Can run in CMSSW via Tensorflow interface, see e.g cms_hh_tf_inference

6

https://github.com/riga/CMSSW-DNN
https://github.com/GilesStrong/cms_hh_tf_inference

AUTOMATED FEATURE SELECTION

• Powerful & tunable methods to:
• Safely filter clusters of monotonically related features;

auto_filter_on_linear_correlation
• Select features based on frequency of importance; repeated_rf_rank_features

• Safely filter features based on mutual dependence;
auto_filter_on_mutual_dependence

• Very useful for wide data, e.g.:
• Predictive analytics with >200 features and no domain theory

• CMS di-Higgs search with > 100 high-level features 7

https://lumin.readthedocs.io/en/stable/lumin.optimisation.html#lumin.optimisation.features.auto_filter_on_linear_correlation
https://lumin.readthedocs.io/en/stable/lumin.optimisation.html#lumin.optimisation.features.repeated_rf_rank_features
https://lumin.readthedocs.io/en/stable/lumin.optimisation.html#lumin.optimisation.features.auto_filter_on_mutual_dependence
https://colab.research.google.com/github/GilesStrong/lumin/blob/v0.7.2/examples/Feature_Selection.ipynb

FEATURE SELECTION: CLUSTERING & REMOVAL OF
CORRELATED FEATURES

8

Cluster monotonically
related features

Try to remove features
without loss of
performance

FEATURE SELECTION: REMOVAL OF MUTUALLY
DEPENDENT FEATURES

9

Train regressors for each
feature

Try to remove
predictable without loss
of performance

HIGHER-ORDER DATA
• Early versions of LUMIN just supported

columnar data, i.e. for analysis-level
research

• Now can run models over higher-order
data for reconstruction algorithms, e.g.:

• 1D series of 4-vectors with
RNNs/CNNs/GNNs

• 2D jet images with CNNs
• 3D detector volumes with CNNs
• Users can provide their own custom

architectures
• Flat data can be passed in parallel to

high-order data using MultiHead
10

3D data example: energy deposits in a calorimeter,
Source: Dorigo, Kieseler, Layer, Strong, 2020

https://lumin.readthedocs.io/en/stable/lumin.nn.models.blocks.html#lumin.nn.models.blocks.head.MultiHead
https://colab.research.google.com/github/GilesStrong/lumin/blob/v0.7.2/examples/RNNs_CNNs_and_GNNs_for_matrix_data.ipynb
https://arxiv.org/abs/2008.10958

CALLBACKS IMPROVEMENTS
• Re-written model training loop to include

more interjection points for callbacks
• Allows for more possibilities and greater

control of model training

• New stateful training means that all
aspects of training (data, other callbacks,
etc.) are accessible by each callback:

• Each callback is aware of every other
callback

• Can modify all aspects of training
• Callbacks can create new callbacks
• Callbacks can manually compute losses

rather than using a basic loss function

• Training start & end

• Epoch start & end

• Fold start & end

• Batch start & end

• After forwards pass

• Before & after backwards pass

• Before & after prediction

11

LEARNING TO PIVOT

• Louppe, Kagan, Cranmer 2016

• An adversarial model tries to predict
parameters based on outputs of main
model

• Forces main model to become invariant
to parameters

• Implemented as callback in LUMIN
• Can be dropped in to standard training

loop without having to write a special
adversarial loop

12

Pivot training forces classifier to become
resilient to pile-up jets

https://papers.nips.cc/paper/2017/hash/48ab2f9b45957ab574cf005eb8a76760-Abstract.html
https://colab.research.google.com/github/GilesStrong/lumin/blob/v0.7.2/examples/Learning_To_Pivot.ipynb

PYTORCH_INFERNO
INFERNO overview and new implementation

13

INFERNO
• de Castro & Dorigo 2018

• Directly optimise DNN for stat. Inf.
• DNN output is binned summary statistic

• Softmax output - can hard-assign after
training

• Loss is inversely proportional to the
uncertainty on parameter of interest

• Computed from inverted Hessian of
likelihood w.r.t. parameters

• Includes nuisances on both input
features & normalisation

• I.e. DNN encouraged to become sensitive
to PoI and resilient to nuisances 14

Source: paper

https://www.sciencedirect.com/science/article/pii/S0010465519301948

INFERNO BENEFIT - TOY EXAMPLE

15

Binned output
of binary
cross-entropy
classifier

Hard-assigned
output of
INFERNO
model

Negative
log-Likelihood on PoI
under systematic
uncertainties

Width (uncertainty)
decreased for
INFERNO

INFERNO SUMMARY

1. Modify input data by nuisances set to zero (nuisances are tensors with
gradient)

2. Forwards pass through network

3. Compute signal & bkg. shapes and normalise by rates

4. Compute profile log-likelihood (NLL) at Asimov count (sig+bkg and no
nuisances)

5. Compute hessian of NLL w.r.t nuisances and PoI

6. Loss is the PoI element of the inverted hessian ((∇2NLL)-1)PoI,PoI 16

IMPLEMENTATION

 Requirements

• Either:
• Access to input data before forward pass

(paper version)
• Or access to pre-modified data for

up/down systematic shifts (interpolation
approximation version)

• Access to model when computing loss
(might be avoidable in certain tensor libs)

• Need to remove gradient due to
nuisances on predictions

17

Difficulties

• Losses normally expected to be a function
that receives only predictions and targets

• Most callbacks and recorders expect loss
to be averaged over data in batch (i.e.
non-reduced element-wises losses exist),
but INFERNO is not an averaged quantity.

https://gilesstrong.github.io/website/statistics/hep/inferno/2021/02/02/inferno-5.html
https://gilesstrong.github.io/website/statistics/hep/inferno/2021/02/02/inferno-5.html

IMPLEMENTATION

• Implement as a callback
• Persistent class with access to the DNN

• on_batch_begin - modify data before
forward pass

• on_forward_end - compute loss and
manually set value

• Requires training loop to be:
• Aware of loss-setting-callbacks
• Fine-grained enough (e.g. Keras 2 only

has on_batch_begin on_batch_end
(unsure about tf.keras))

18

Modify data to
include
nuisances

Compute loss
and set
self.loss_val

PYTORCH INFERNO
• Provides minimal framework for:

• Training & applying PyTorch DNNs
• Plus necessary callback system

• Computing profile likelihoods for inferring
parameters of interest under uncertainty

• Successfully reproduces paper results

• Introduces an approximation method
which works directly on ±1 sigma shifted
data

• Links:
• Docs
• Github
• PyPI

19

https://gilesstrong.github.io/pytorch_inferno/
https://github.com/GilesStrong/pytorch_inferno
https://pypi.org/project/pytorch-inferno/

DISCUSSION
• Main aim of library to demonstrate non-disruptive implementation of

INFERNO
• LUMIN (compatible) version foreseen

• Tensorflow implementations:
• Tensorflow 1: paper-inferno - Pablo de Castro

• Custom framework

• Loss computed via custom training loop

• Tensorflow 2: inferno - Lukas Layer
• Single Jupyter Notebook (runnable on Colab)

• Loss computed via custom training loop
20

https://github.com/pablodecm/paper-inferno
https://github.com/llayer/inferno

BLOG SERIES

• 5-part series on INFERNO and (param inference in HEP)

• Introduces & uses PyTorch package

• Parts 1 & 2 - intro to param inference

• Part 3 - ML classifier for summary stat.

• Part 4 - INFERNO for summary stat.

• Part 5 - Approximating INFERNO for easier application
21

https://gilesstrong.github.io/website/statistics/hep/inferno/2020/12/04/inferno-1.html
https://gilesstrong.github.io/website/statistics/hep/inferno/2020/12/11/inferno-2.html
https://gilesstrong.github.io/website/statistics/hep/inferno/2020/12/18/inferno-3.html
https://gilesstrong.github.io/website/statistics/hep/inferno/2020/12/31/inferno-4.html
https://gilesstrong.github.io/website/statistics/hep/inferno/2021/02/02/inferno-5.html

SUMMARY

• LUMIN is a powerful library which is
continuing to grow and develop

• Provides convenient access to recently
published methods and ideas

• Already used in a diverse range of
research tasks

• Would benefit greatly from user feedback
• And more contributors!

22

• INFERNO has the potential to greatly
improve HEP measurements

• And other domains

• But needs to be tested out in a range of
real-world problems

• E.g. Lukas Layer is currently testing it on
CMS open-data

• Can be tricky to set up, but
implementations now exist for both
Tensorflow 1 & 2, and PyTorch

BACKUP SLIDES

23

24

PROCESS - ONE UPDATE STEP

1. Minibatch: x - inputs, y - targets

2. Cache tensor of nuisances at nominal values
(zero)

3. Modify inputs according to shape nuisances:
x←x+nuisances
a. E.g. x1←x1+0, x2←x2*(x2+0)/x2,
b. Nuisances don’t change input values but allow

gradients to be computed
c. Instead add “the potential to be modified”

4. Pass x through NN (with softmax)

5. Predictions yp: probabilities per bin/class

6. Index signal & background using y
a. Sum counts per bin → sig & bkg shapes
b. Detach/stop gradient on xbkg and pass

through NN → Asimov bkg template
i. Ideally remove gradient from already

computed bkg shape, but depends on
tensor library

7. Compute stats.:
a. texp = Ns· shapesig + Nb· shapebkg

b. tasimov = Ns,true· shapesig + Nb,true· shapebkg,asimov

25

PROCESS - ONE UPDATE STEP
8. Build Poisson likelihood:

a. NLL = -Pois(texp).log_prob(tasimov).sum()
b. Ns, Nb, and shape nuisances already at

nominal values, NLL minimised, profiling
unnecessary

c. Add constraints on nuisances if present

9. Compute Hessian of NLL w.r.t. PoI and
nuisances: ∇2NLL (2D square matrix),
a. N.B at minimum, ∇NLL = 0
b. Hessian diagonal = effect of each param on

NLL
c. Hessian off-diagonal (symmetric) = interplay

between params

10. Invert Hessian & return element
corresponding to PoI as loss value
a. Want PoI Hessian element to be as large as

possible: NLL narrower in PoI axis
b. But want nuisance elements to be as small as

possible: NLL flatter in nuisance axes
c. Inversion “mixes” elements in Hessian
d. Minimising PoI element of inverted Hessian

leads to desired result

11. Backprop loss value and update weights as
normal

