MLaaS4HEP: Machine
Learning as a Service for HEP

Luca Giommi! (luca.giommi3@unibo.it), Valentin Kuznetsov?, Daniele Bonacorsi!, Daniele Spiga3
L University of Bologna and INFN Bologna, Italy
2 Cornell University, USA
3INFN Perugia, Italy

IML meeting, March 16th 2021

Why Machine Learning as a Service?

» Machine Learning techniques in the HEP domain are
ubiquitous and will play a significant role also in the
upcoming High-Luminosity LHC upgrade.

» One of the main obstacles in this scenario is the real gap
among HEP physicists and ML experts, caused by the
specificity of some parts of the HEP typical workflows and
solutions.

» To close this gap and ease the physicists not ML-
practitioners in the usage of ML techniques in their
analyses, we propose a Machine Learning as a Service for
HEP (MLaaS4HEP) solution as a product of R&D activities
within the CMS experiment.

IML meeting, March 16th 2021

Machine Learning in High Energy Physics Community White Paper

May 17, 2019

Abstract: Machine learning has been applied to several problems in particle physics research, beginning with
applications to high-level physics analysis in the 1990s and 2000s, followed by an explosion of applications
in particle and event identification and reconstruction in the 2010s. In this document we discuss promising
future research and development areas for machine learning in particle physics. We detail a roadmap for their
implementation, software and hardware resource requirements, collaborative initiatives with the data science
community, academia and industry, and training the particle physics community in data science. The main
objective of the document is to connect and motivate these areas of research and development with the physics
drivers of the High-Luminosity Large Hadron Collider and future neutrino experiments and identify the resource
needs for their implementation. Additionally we identify areas where collaboration with external communities
will be of great benefit.

Editors: Sergei Gleyzer®®, Paul Seyfert'*, Steven Schramm?

Contributors: Kim Albertsson', Piero Altoe?, Dustin Anderson?, John Anderson?, Michael Andrews®, Juan
Pedro Araque Espinosa®, Adam Aurisano”, Laurent Basara®, Adrian Bevan®, Wahid Bhimji'?, Danicle Bonacorsi'!,
Bjorn Burkle'?, Paoclo Calafiura'”, Mario Campanelli, Louis Capps?, Federico Carminati'®, Stefano Carrazza'®,
Yi-Fan Chen®, Taylor Childers**, Yann Coadou'5, Elias Coniavitis'®, Kyle Cranmer!”, Claire David'®, Douglas
Davis'?, Andrea De Simone?’, hnu Duarte?!, Martin Erdmann®?, Jonas Eschle?®, Amir Farbin?¢, Matthew
Feickert®®, Nuno Filipe Castro®, Conor Fitzpatrick?®, Michele Floris'®, Alessandra Forti®", Jordi Garra-Tico®®,
Jochen Gemmler?®, Maria (nmnt‘ Paul Glaysher'®, Sergei G ll)mr“’ Viadimir Vava Gligorov?', Tobias
Golling*?, Jonas Graw?, Lindsey Gray?! Dxd\ Greenwood ™, llmm s Hacker?®, John Harvey!3, Benedikt
Hegner'®, Lukas Heinrich'”, Ulrich He mt/ . Ben Hooberman®®, Johannes .lung;-,(-lnu'lh:“ﬂ Michael Kagan®’,
Meghan Kane®, Konstantin Kanishchev®, I’uvunyslnw I\'urpil'xski::‘, Zahari Kassabov®®, Gauray Kaul*”, Dorian
Kcira®, Thomas Keck?®?, Alexei l\lum ntovi!, Jim Kowalkowski?!, Luh Kreczko'?, Alexander Kurej pm”. Rob
Kutschke?!, Valentin Kuuwl.w\ , Nicolas I\uh]u ¥ Jgor L Akomm , Kevin Lannon®®, Mario Lassnig'?, Anto-
nio Limosani®®, Gilles Louppe'”, Aashrita \L\uj.,u . Pere Mato™* Hdr(Meinhard'?®, Dario Menasce®®, Lorenzo
Moneta!, Seth Muurtgm“ \k(lnkdu Narain!?, M ark Neubauer? Newman®, Sydney ()Ht-n""". Hans
Pabsti?, Michela P aganini® 252, Attilio Picazio®, Jim Pivarski®,
Harrison Pl(xxpll , Fernanda Psihas™, Alexander Radovic®. Ryan Reece™ \uulm.\ Rinkevicius®®, F(lu wrdo
Rodrigues’, Jamal Roru I David Ro %, Aaron Sauers?', Steven Schramm?2, Ariel Schwartzman®?, Horst
S(\uuu“ Paul St\l(xl“ Filip Siroky®?, Konstantin Skazytkin®3, \hkt Sul«)lulr Graeme SIL\\.Jn“ Bob
Stienen®, Ian Stockdale® (ulm Strong® \\u Sun®, Savannah Thais®, Ka LERU phl 2 Emanuele
Usai'2, \nchu Ustyuzhanin®’, Martin Vala®, Sofia Vallecorsa®, Justin Vasel®®, Mauro etti”™, Xavier V
las{s-Cardon Jean-Roch V hm ant®, llija Vukotic™, Sean- lmn Wang®, Gordon Watts™, Michael Williams™,
Wenjing Wu®, Stefan Wunsch®™, Kun Yang®. Omar Zapata’™®

Manfred Paulini®, Gabriel Perdue?®!, L’uu l Pe
56

arXiv:1807.02876v3 [physics.comp-ph]

https://arxiv.org/abs/1807.02876v3

Machine Learning as a Service

CLOUD MACHINE LEARNING SERVICES COMPARISON

Amazon Microsoft Google

Automated and semi-automated ML services

AmasonML Microsoft Azure ML Google Prediction IBMWatson ML
Studio API Model Builder

Classification \/ \/ \/

Regression \/ v

Clustering v

Anomaly
detection

Recommendation
Ranking v

Platforms for custom modeling

IBM Watson ML

Amazon SageMaker Azure ML Services Google ML Engine Studio

Built-in v i

algorithms

TensorFlow.

TensorFlow, MXNet, TensorFlow, scikit- Spark MLLib.

Supported Keras, Gluon. learn, Microsoft scikit-learn
frameworks Pytorch, Caffe2, Cognitive Toolkit, XGBoost,

Chainer, Torch SparkML fCSeoskBetes PyTorch, IBM

SPSS, PMML

TensorFlow,
scikit-learn,

» MLaaS is a set of tools and services including:

data visualization, pre-processing, model
training and evaluation, serving predictions, etc.

Many of the world’s leading cloud providers
provide different types of MLaaS services,
including Amazon, Microsoft, Google and IBM

MLaaS service providers offer pre-defined
models that can be used to cover standard use-
cases, e.g. classification, regression, natural
language processing, facial recognition,
DeepLearning

Issues with using existing solutions

Existing MLaaS services can’t read HEP data directly in the ROOT data-format: most of the cases ML deal with
either CSV or NumPy arrays representing tabular data

* We don’t use ROOT data directly in the ML framework, we need a conversion step

* Pre-processing operations may be more complex than offered by service providers

R&D for specialized solutions to speed-up inference on FPGAs, e.g. HLSAML

* These solutions are designed for optimization of the inference phase rather than targeting the whole ML
pipeline from reading data, to training and serving predictions

Custom solutions adopted in specific CMS analysis (e.g DOI: 10.1088/2632-2153/ab9023) cannot easily
generalized and do not represent “as a Service” solutions

Recent solution with Spark platform for data processing and ML training (DOI: 10.1007/s41781-020-00040-0).
Here data are read from the CERN EOS storage system, not allowing access to data stored in WLCG sites

https://fastmachinelearning.org/hls4ml/
https://iopscience.iop.org/article/10.1088/2632-2153/ab9023
https://link.springer.com/article/10.1007%2Fs41781-020-00040-0

MLaaS for HEP

Data repositories (GRID sites)

MLaaS for HEP aims at providing the following: m
» natively read HEP data, e.g. be able to read ROOT files of

arbitrary size from local or remote distributed data-sources via

XrootD
> use heterogeneous resources both for training and inference, '

like local CPU, GPUs, farms, cloud resources, etc.

(¥ 4
» use different ML libs and frameworks (Keras, TF, PyTorch, etc.)
inference train

» serve pre-trained HEP models, like a models repository, and

access it easily from any place, any code, any framework. m (f\"\)

IML meeting, March 16th 2021 4

MLaaS4HEP R&D

» Data Streaming Layer is responsible for local and remote data
access of HEP ROOQT files

» Data Training Layer is responsible for feeding HEP ROOT data
into existing ML frameworks

» Data Inference Layer provides access to pre-trained HEP model
for HEP users

All three layers are independent from each other and allow
independent resource allocation

Data streaming and training tools: github.com/vkuznet/MLaaS4HEP
Data inference tool: github.com/vkuznet/TFaaS

Paper on arXiv (arXiv:2007.14781v2 [hep-ex]) and submitted to the
CSBS journal

local \.__,‘

flesystem [—>% 5
S

Remote

storage

Input data: NumPy array

NumPy 1D array

shape: (3.)

NumPy 2D array

shape: (2,3)

‘ ‘ NumPy N dim array

shape: (X.Y.Z....)

A fesh.

Data Reader

* preprocessing —= batches

-4 - - -

SERVICE

Data Streaming Layer

ML model: e.g. Neural Network

Data Training Layer

Repository
of ML models

Data Inference Layer

https://github.com/vkuznet/MLaaS4HEP
https://github.com/vkuznet/TFaaS
https://arxiv.org/abs/2007.14781v2
https://www.springer.com/journal/41781

Data Streaming Layer

» The development of the DIANA-HEP uproot library provides the ability to read ROOT data in Python, access them
as NumPy arrays, and implements XrootD access to read remote files

» MLaaS4HEP extends uproot library and provide APIs to feed data read from local and remote distributed ROOT files
into existing ML frameworks

a Python Generator is created to read ROOT files and deliver them as chunks

such implementation provides efficient access to large datasets since it does not require loading the
entire dataset into the RAM of the training node

random reads from multiple files are supported, taking the right proportion of data from each file

» The non-flat ROOT branches are read and represented by uproot as Jagged Arrays

Data Training Layer

» Each event is a composition of flat and Jagged Arrays
e Such data representation is not directly suitable
for ML (dynamic dimension of Jagged Arrays aray’
across events) a

sayoueiq
e}

» To feed these data into ML we need to resolve how to
treat Jagged Arrays. We opted to flatten Jagged Arrays
into fixed-size array with padding values through a two-

step procedure: jagged
. 0 . dimensionali
* know the dimensionality of every Jagged Array Y

sayoue.q
pabbel

attri b Ute; Transform jagged NumPy
* update the dimension of jagged branches using @ array into flat one
padding values, which should be assigned as NANs
since all other numerical values can represent agged rest of
attribute spectrum. flat ranches padding braneh e

»
< >

» Keep the mask array with padding values location

jagged branches

» We provide a proper normalization of each attribute

specs.json
O 2 e I

{max:
{key1: max_1,
Read all the key_2: max_2,...}, load specs
ROOT files min: information
{key_1: min_1, key_2:
min_2,...}, ...}

compute
specs file

ﬁproot

@ /st of files

ﬁproot

If chunk c;is empty
or fully processed,

read N, ., events

Eﬂ from the file f; - iE

read the events
NO Take Nchunk' ni/Ntot
events from the chunk c, chunk of handled events
Are ‘ —5|
o YES all the files ——B]
completely convert into numpy —————B| jagged branches
read? arrays, fix Jagged ———5]
Arrays’ dimension and —8B ' jagged - restof
li the values — flat branches padding branch jagged bran_ches
normalise ~_| (:{E with padding
\ i: 5 fﬁ:}|IJIIlIIIIIIllIIIlIIl[]I_lIIIII

Did
you go
through all the
files?

pre-process the events

Train the model for >
Nepocns USING batches K N g \
of data with size N ., i

train the ML model

./workflow.py ——files=files.txt ——labels=1labels.txt —model=model.py ——params=params.json

MLaa$ Input Labels of

workflow ROOT files ROOT files

MLaa$S
parameters

Keras model (model.py)

from tensorflow import keras
from keras.models import Sequential
from keras.layers import Dense, Dropout

def model(idim):
"Simple Keras model for testing purposes"
ml_model = Sequential([Dense(128,
activation='relu', input_shape=(idim,)),
Dropout(0.5),
Dense(64, activation='relu'),
Dropout(0.5),
Dense(1, activation='sigmoid')])
ml_model.compile(optimizer=keras.optimizers.Adam(1lr=1e-3),
loss=keras.losses.BinaryCrossentropy(),
keras.metrics.AUC(name="auc')])

MLaaS parameters (params.json)

"nevts'": 30000,

"shuffle": true,

"chunk_size": 10000,

"epochs": 5,

"batch_size": 100,

"identifier": ["runNo", "evtNo", "lumi"],
"branch": "boostedAk8/events",

"selected_branches":"",
"exclude_branches": "",

"hist": "pdfs",

"redirector": "root://xrootd.ba.infn.it",

"verbose": 1

Input ROOT files (files.txt)

PATH/flatTree_ttHJetTobb_M125_13TeV_amcatnloFXFX_madspin_pythia8. root

PATH/flatTree_TT_TuneCUETP8M2T4_13TeV-powheg-pythia8.root

Labels of ROOT files (labels.txt)

IML meeting, March 16th 2021

MLaaS parameters Read remote root files Write and load the specs

| I

./workflow.gLL;—files=files.txt ——Tlabels
1 1593445994.0

DataGenerat
00, "identifier": ["runNo", "evtNo", "lumi"],
irector": "root://xrootd.ba.infn.it", "verbose": 1}

ythia8. root

, 9.833482950553169 kHz
sec, 7.705484441248654 kHz
/sec, 7.089777734505208 kHz

atTree_ttHJetTobb_M125_13TeV_amcatnloFXFX_madspin
MB, 1.0169336795806885 sec, 9.36364252323795 MB/
5 MB, 1.2977769374847412 sec, 7.346343770133804 M
08 MB, 1.4104814529418945 sec, 6.7627033726234735
jagged) branches, 328 attrs

x7t840dbf4d50> init is complete in 4.852992534637

Reading root://xrootd.ba.infn.it//PATH_FILES
10000 entries, 77 branches, 9.52220344543
10000 entries, 77 branches, 9.53391551971
10000 entries, 77 branches, 9.5386676788
——— first pass: 948348 events, (22-flat, 5

<MLaaS4HEP. reader.RootDataReader object a sec

oot

MB/sec, 10.42047313071777 kHz
MB/sec, 7.728618026459661 kHz
MB/sec, 8.874771534572496 kHz

Reading root://xrootd.ba.infn.it//PATH_FILES/flatTree_TT_TuneCUETP8M2T4_13TeV-powheg—pythia
10000 entries, 77 branches, 8.875920295715332 MB, 0.9596493244171143 sec, 9.2491288951894
10000 entries, 77 branches, 8.868906021118164 MB, 1.2938923835754395 sec, 6.854438694979
10000 entries, 77 branches, 8.869449615478516 MB, 1.1267895698547363 sec, 7.871433897477
——— first pass: 1003980 events, (22-flat, 52-jagged) branches, 312 attrs

<MLaaS4HEP. reader.RootDataReader object at 0x7f8410e15f90> init is complete in 4.53512477§ A7559 sec

write global-specs.json
load specs from global-specs.json for root://xrootd.ba.infn.it//$PATH_FILES/flatTree_ttHJetTobb_M125_13TeV_amcatnloFXFX_madspin_pythia8. root

load specs from global-specs.json for root://xrootd.ba.infn.it//$PATH_FILES/flatTree_TT_TuneCUETP8M2T4_13TeV-powheg—pythia8.root
init RootDataGenerator in 11.186564683914185 sec

label 1, file <flatTree_ttHJetTobb_M125_13TeV_amcatnloFXFX_madspin_pythia8.root>, going to read 4858 events

read chunk [0:4857] from /$PATH_FILES/flatTree_ttHJetTobb_M125_13TeV_amcatnloFXFX_madspin_pythia8. root

10000 entries, 77 branches, 9.52220344543457 MB, 1.3816642761230469 sec, 6.891835889507034 MB/sec, 7.237648228164387 kHz
total read 4858 evts from /$PATH_FILES/flatTree_ttHJetTobb_M125_13TeV_amcatnloFXFX_madspin_pythia8. root Create the chunk

label 0, file <flatTree_TT_TuneCUETP8M2T4_13TeV-powheg-pythia8.root>, going to read 5142 events

read chunk [4858:9999] from /$PATH_FILES/flatTree_TT_TuneCUETP8M2T4_13TeV-powheg—pythia8.root

10000 entries, 77 branches, 8.875920295715332 MB, 1.7170112133026123 sec, 5.169401473297779 MB/sec, 5.8240737873606205 kHz
total read 5142 evts from /$PATH_FILES/flatTree_TT_TuneCUETP8M2T4_13TeV-powheg-pythia8.root

Model: "sequential"

Layer (type) Output Shape Param #

dense (Dense) (None, 128) 49152

dropout (Dropout) (None, 128) 0

dense_1 (Dense) (None, 64) 8256 Init the ML model
dropout_1 (Dropout) (None, 64) 0

dense_2 (Dense) (None, 1) 65

Total params: 57,473
Trainable params: 57,473
Non-trainable params: @

Perform training cycle

Train on 7000 samples, validate on 3000 samples
Epoch 1/2

7000/7000 [
val_auc: 1.0000 - val_accuracy: 1.0000
Epoch 2/2

7000/7000 [
1.0000 - val_accuracy: 1.0000

] - 2s 220@us/sample — loss: 1.5275 - auc: 0.7845 - accuracy: 0.7307 - val_loss: 2.5731e-04 -

] - @0s 20us/sample - loss: 0.1406 — auc: 0.9883 - accuracy: 0.9543 - val_loss: 8.8477e-06 — val_auc:

Data Inference Layer

The Data Inference Layer is implemented as TensorFlow as a Service (TFaaS), written in the Go programming language
 The Go programming language natively supports concurrency and it is very well integrated with the TF library

TFaaS is capable of serving any TensorFlow model and it can be used as a global repository of pre-trained HEP models
(it is experiment agnostic and can work with any HTTP based client)

Both Python and C++ clients were developed on top of the REST APIs (end-points) and other clients can be developed
thanks to HTTP protocol used by the TFaaS Go RESTful implementation

* C++ client library talks to TFaaS using ProtoBuffer data-format, all others use JSON (see examples)

TFaaS allows a rapid development or continuous training of TF models and their validation: clients can test multiple TF
models at the same time
* A demo server hosted by CERN is online: https://cms-tfaas.cern.ch/

From R&D to a production service: expanding the team on code maintainance and ops support

https://github.com/vkuznet/TFaaS
https://github.com/vkuznet/TFaaS/tree/master/src/cpp
https://github.com/vkuznet/tfaas
https://cms-tfaas.cern.ch/

Real case scenario:

ttH (bb) analysis in the boosted, all-hadronic final states

» We performed a proof-of-concept of the entire pipeline using
CMS NANOAOD.

» We recently validated the MLaaS framework, namely tested
the infrastructure on real physics use-case. We chose a signal

vs background discrimination problem in a ttH analysis. This
allows us to:

1. validate MLaaS results from the physics point of view
2. test performances of MLaa$S framework

For the phase of validation we used 9 ROOT files, 8 of background
and 1 of signal. Each file has 27 branches, with 350 thousand

events for the whole pool of files and a total size of almost 28 MB.
The ratio between signal and background is 10.8%.

3
000000

g

oL o T T O

MLaaS4HEP validation

0.950

» Validate the MLaaS4HEP approach by comparing it with 0.925 -
alternative methods on the reference use-case
* We used a simple NN with Keras in all methods

0.900 -

AUC

» Validation successful: physics results are not impacted

0.875 A

—— using jupyter notebook

» The AUC score is also comparable with the BDT-based s, T [eading with MLaas, model with jupyter notebook
analysis, performed within the TMVA framework by a — rraining
subgroup of the CMS HIG PAG == Vallaation
>8 ; 3 ; :

Epoch

AUC score

MLaaS4HEP performance

For this phase we used all available ROOT files without any physics cut. This gave us a dataset with 28.5M
events with 74 branches (22 flat and 52 Jagged), and a total size of about 10.1 GB.

We performed all the tests running MLaaS framework on
* mac0S, 2.2 GHz Intel Core i7 dual-core, 8 GB of RAM
* CentOS 7 Linux, 4 VCPU Intel Core Processor Haswell 2.4 GHz, 7.3 GB of RAM CERN Virtual Machine

The average available bandwidth was approximately 129 Mbit/s and 639 Mbit/s using macOS and CERN VM,
respectively.

The ROOT files are read from local file-systems (SSD storages) and remotely from the Grid sites. In particular,
we read files remotely from three different data-centers located at

* Bologna (BO)

e Pisa (PI)

* Bari (BA)

MLaaS4HEP performance results

» Based on the resource we used and if the ROOT files were local or remote, we obtained:
*»» specs computing phase (chunk size = 100k events)
* Event throughput: 8.4k — 13.7k evts/s
e Total time using all the 28.5M events: 35 -57 min $v?$
¢ chunks creation in the training phase (chunk size = 100k events) ?&\,\@
* Event throughput: 1.1k — 1.2k evts/s
e Total time using all the 28.5M events: 6.5 - 7.5 hrs

» The time to train the ML model is not included in the performance. It is independent from the MLaaS4HEP
framework but depends on the underlying ML framework, the complexity of the used ML model, and the
available hardware resources.

» We estimate that projecting these results for datasets at the TB scale and using the same hardware resources, the
specs computing phase will take O(100) hours and the training phase will take O(1k) hours (plus the time required
to train the ML model).

* Further optimization of the MLaaS4HEP pipeline will be required to process TB or PB scale datasets and it
may involve parallelization of 1/0, distributed ML training, etc.

TFaaS performance

We did TFaaS benchmarks on CentOS 7 Linux, 16 cores, 30 GB of RAM in two modes:
* using 1k calls with 100 concurrent clients,
* using 5k calls with 200 concurrent clients.

We tested both JSON and ProtoBuffer data formats while sending and fetching the data to/from the TFaaS server.

In both cases, we achieved a throughput of 500 req/sec. These numbers were obtained by serving a mid-size pre-
trained NN model with 27 features and 1024x1024 hidden layers used in the physics analysis discussed. Similar
performance was found for image classification datasets (MNIST).

The actual performance of TFaaS will depend on the complexity of served ML model and available hardware
resources.

Even though a single TFaaS server may not be as efficient as an integrated solution, it can be horizontally scaled,
e.g. using Kubernetes or other cluster orchestrated solutions, and may provide the desired throughput for
concurrent clients.

Towards MLaaS4HEP cloudification

» We created a service performing the ML pipeline using local and remote ROOT files
* The performance strictly depends on the available hardware resources

» How to improve the performance?
* Adopt new solutions in the code
* |nvest in better and more expensive on-premise resources
* Move to the cloud

» The operation of cloudification has two benefits:
* opens us to potentially more performing resources
* provides a real “as a Service’” solution for the user

» We started to work for a MLaaS4HEP cloudification using DODAS
* implements services composition model based on templates

Nihlaas

DODAS provides a solution at
that level...

I 4 H

Network
Architects

In order to enable
this layer

il
e
P

o

dcker

@

Creation of a docker

image able to run the ‘

workflow.py script

Run workflow.py
interactively or
with jupyterhub

-

Create an Ansible playbook to)

automatize the configuration
and deployment of the
container with dependencies

5 4

— Create the deployment
from command line

dodas create lgiommi-template.yml
dodas login <infID> <vmID>

K.

Ay

ANSIBLE

Convert the Ansible

‘ playbook into an

Ansible role

4

Creation of a Tosca template to
define the resource requirements
and the input parameters for the

creation of the docker container
N new

| OASIS () |

19

https://github.com/lgiommi/mlaas_cloud/blob/master/Dockerfile
https://github.com/lgiommi/mlaas_cloud/blob/master/lgiommi-template-scenario1.yml
https://github.com/lgiommi/mlaas_cloud/tree/master/mlaas_role

MLaaS4HEP using Jupyterhub

» We provide a SaaS solution for a sharable jupyter notebook
» Token-based access to the jupyterhub, with the support for a customizable environment

Server Options

Select your desired image: il € felixfelicislp/mlaas_cloud:mlaas_jupyterhub
Select your desired memory size: 4c8 B
GPU: NotAvailable B

l 1

» Integrate cloud storage for managing the required files (ROOT files, ML model, etc.)

. ./shared/setup_local

(base) # cd /workarea/shared/folder_test

(base) # ../../workarea/MLaaS4HEP/src/python/MLaaS4HEP/workflow.py ——files=files_test.txt —-labels=1labels_test.txt —
model=keras_model.py ——params=params_test.json

model parameters: {"nevts": -1, "shuffle": true, "chunk_size": 10000, "epochs": 5, "batch_size": 100, "identifier": ["runNo", "evtNo",
"lumi"], "branch": "events", "selected_branches": "", "exclude_branches": "", "hist": "pdfs", "redirector": "root://gridftp-storm-
t3.cr.cnaf.infn.it:1095", "verbose": 1}

Reading ttH_signal. root

10000 entries, 29 branches, 1.10626220703125 MB, 0.034181833267211914 sec, 32.364039645948566 MB/sec, 292.5530623775014 kHz

10000 entries, 29 branches, 1.10626220703125 MB, 0.022344589233398438 sec, 49.50917626973965 MB/sec, 447.53563807084936 kHz

summary

We built a MLaaS solution for HEP where:

local and remote ROOT files can be directly read

complexity of data transformation from ROOT I/O to ML is hidden from the user
resources can be used dynamically and independently for training and inference layers
Python based ML framework of user choice can be used (e.g. TensorFlow, Keras, Pytorch)

customization via JSON configuration: total number of events to read; chunk size of data to read; select or exclude
branches to read, choice of XrootD redirector

we validated the MLaa$S framework with a physics use-case and achieved similar results as BDT analysis
we did performance tests for the streaming and training layers

VVVYY

vV V

More in the ISGC’21

And ...) oral talk, March 25t
» we moved towards the MLaaS4HEP cloudification using DODAS

* provides interactive and jupyterhub access for an user-friendly platform where run MLaaS4HEP
* provides compliance with the INFN-Cloud portfolio of services

Planning: dynamically load user-based pre-processing functions; |/O parallelization and distributed ML training; try FPGAs
to speed up the inference phase, ...

https://indico4.twgrid.org/indico/event/14/session/16/contribution/53

Thanks for the attention

Backup slides

30000

25000

20000

15000

Event throughput (evts/s)

-

10000

5000
10 33 50

run in macOS with local files
run in CERN VM with local files
———run in CERN VM with remote (BARI) files

Thousands eventsin achunk

100 200 500 1000

——run in macOS with remote (BOLOGNA) files
run in CERN VM with remote (BOLOGNA) files
———run in CERN VM with remote (PISA) files

reading time | specs comp. time | time to complete event throughput for
(s) (s) step (D (s) reading + specs comp. (evts/s)

macOS with local files 1633 (9) 958 (2) 2599 (11) 11055 (49)
macOS with remote files (BO) 2365 (49) 974 (10) 3353 (57) 8585 (149)
VM with local files 1131 (3) 963 (2) 2102 (5) 13690 (34)
VM with remote files (BO) 2455 (68) 959 (2) 3427 (67) 8396 (158)
VM with remote files (BA) 2304 (88) 961 (2) 3279 (89) 8801 (241)
VM with remote files (PI) 2129 (41) 1044 (78) 3186 (83) 9047 (228)

~19-41 min ~16-17 min ~35-57 min ~ 8.4k — 13.7k evts/s

Values for chunk size fixed to 100 thousands events

24

1250

1200

=
=
(%
o

1100

1050

Eventthroughput (evts/s)

[y
o
o
o

950
900
10 33 50 100 200 500 1000
Thousands eventsin achunk
run in macOS with local files ——run in macOS with remote (BOLOGNA) files
run in CERN VM with local files run in CERN VM with remote (BOLOGNA) files
——run in CERN VM with remote (BARI) files ——run in CERN VM with remote (PISA) files
event throughput for event throughput for
creating a chunk (evits/s) | pre-processing a chunk {evts/s)

macOS with local files 1102 (11) 1157 (7)
macOS with remote files (BO) 1057 (17) 1138 (4)
VM with local files 1209 {11) 1247 (2)
VM with remote files (BO) 1110 (32) 1243 (5)
VM with remote files (BA) 1071 {19) 1153 (4)
VM with remote files (PT) 1152 {18) 1234 (5)

~1.1k — 1.2k evts/s

Values for chunk size fixed to 100 thousands events

25

More on MLaaS4HEP performance

» The training step takes about 7 hours for both MacOS and CERN VM, using all the 28.5M events (plus the time
required to train the ML model), where:
 36% is used to extract and convert each event in a list of NumPy arrays;
 27% is used for fixing the Jagged Arrays’ dimension;
e 26% is used for the normalization step;
* 6% is used for creating the masking vectors.

» We estimate that, projecting these results for datasets at the TB scale and using the same hardware resources, the
specs computing phase will take O(100) hours and the training step will take O(1k) hours (plus the time required to
train the ML model)

e Further optimization of the MLaaS4HEP pipeline will be required to process TB or PB scale datasets and it may
involve parallelization of I/O, distributed ML training, etc.

» The time to train the ML model is not included in the performance shown. This time is independent from the
MLaaS4HEP framework since it is determined by usage of the underlying ML framework, the complexity of used ML
model and the available hardware resources.

* |n our case the training time for a chunk of 100k events is about 11 seconds and 13 for MacOS and CERN VM,
respectively.

How to use TFaaS (1)

> Follow the installation instructions here

» Setup url to point to your TFaaS server (e.g url=http://localhost:8083 or url=https://cms-tfaas.cern.ch/)

» If necessary convert the model into a TensorFlow one (e.g using this solution)

» create upload J-S-On file, wthh should include: =1 Gien U e Rl Efamplti_o“fa p;rrmS-quf\ fllezd "
fU”y qua||f|Ed model file name {"model": "/path/model.pb", |{| nadmle .b"m"(:j e—lt]ar‘ne it "mo € d |
fully qualified labels file name "labels": "/path/labels.txt", ool el it
model name you want to assign to your model file ::name“:l:'Tode:]_name", - ..mputf\lode..’: ..denseil_mpui..' ’
fully qualified model parameters json file name params":"/path/params.json’} "outputNode": "output_node0"}

» the model parameters json file is used on a TFaaS server side. It context should be the following:

model name (how your model will be named in TFaaS server, e.g. the one in the upload.json file)

model file name (name of your model file will be used in TFaaS server, e.g. the one in the upload.json file)
model labels file name (similar to model file name but used for labels file)

description string (provide details about your model)

inputNode of your TF model (can be found by inspecting pbtxt)

outputNode of your TF model (can be found by inspecting pbtxt)

https://github.com/vkuznet/TFaaS/blob/master/doc/INSTALL.md
https://cms-tfaas.cern.ch/
https://github.com/vkuznet/keras_to_tensorflow

How to use TFaaS (2)

We provide pure python client to perform all necessary actions against TFaaS server. Here is short description
of available APlIs

upload a model to the server
« tfaas_client.py --url=Surl --upload=upload.json

list existing models in TFaaS server
« tfaas_client.py --url=Surl --models

delete given model in TFaaS server
« tfaas_client.py --url=Surl --delete=model_name

prepare input json file for querying model predictions
* e.g. {"keys":["attributel", "attribute2"], values: [1.0, -2.0]}

get predictions from TFaaS server
« tfaas_client.py --url=Surl --predict=input.json

get image predictions from TFaaS server
« tfaas_client.py --url=Surl --image=/path/file.png --model=ImageModel

https://github.com/vkuznet/TFaaS/blob/master/src/python/tfaas_client.py

Dodas

Dynamic On Demand Analysis Service (DODAS) is a Platform as a Service tool for generating over cloud resources
and on-demand, container based solution.

_ MLaaS4HEP
» Both HTCondor batch system and platform for the Big Data /
analysis based on Spark, Hadoop etc, can be deployed using | -
“any cloud provider” with almost zero effort. 7 SaaS /K .

» DODAS completely automates the process of provisioning,
creating, managing and accessing a pool of distributed and
heterogeneous computing and storage resources.

Network
Architects

» DODAS has a high level of modularity, a key to a generic
applicability.

In order to enable
this layer

* Being modular, the architecture provides the ability to , .
. g) DODAS provides a solutionat |
easily customize the workflow depending on the thiat Tevel
community computational requirements.

