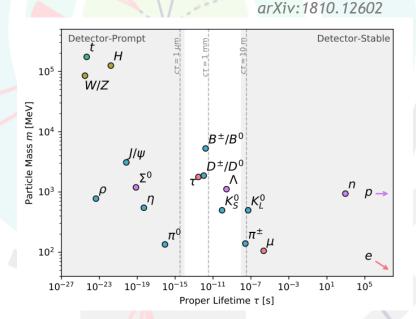


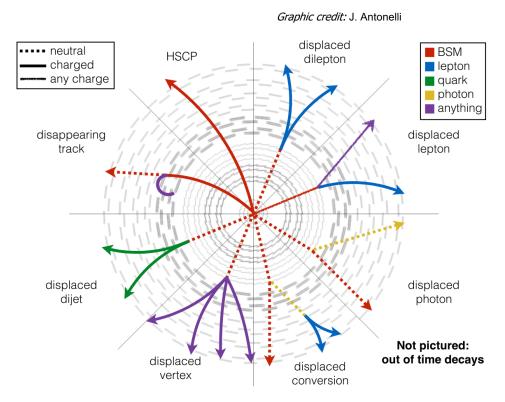
CMS


LHCb

ISMD 2 0 2 2

> *Claudia Gemme - INFN Genova on behalf of* ATLAS, CMS and LHCb Collaborations

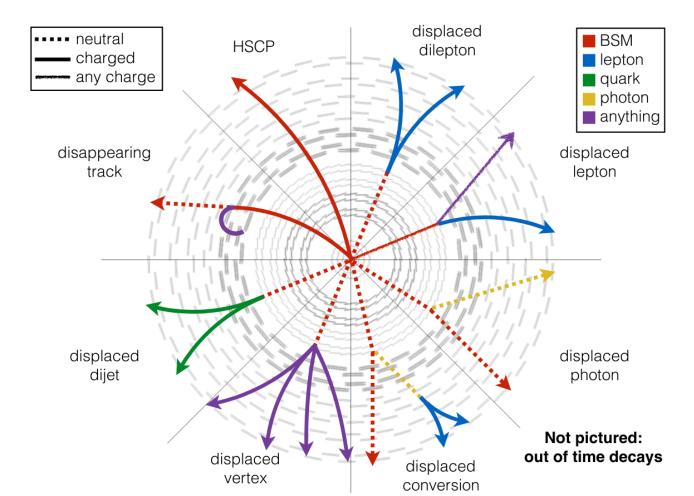
Why LLPs searches?


- Long Lived Particles (LLPs) are BSM particles that decay inside the detector or, if charged, that are stable within the detector acceptance.
- LLPs do exist! New long-lived particles are both theoretically and experimentally motivated
 - small couplings
 - phase-space suppression
 - conserved (or nearly conserved) symmetries
- There is a strong increasing interest in BSM LLPs as our current extensive look at 13 TeV data yields impressive agreement with Standard Model expectations.
- Detectors upgrades are now using also these channels as benchmarks. It was not the case for the original construction.

Introduction

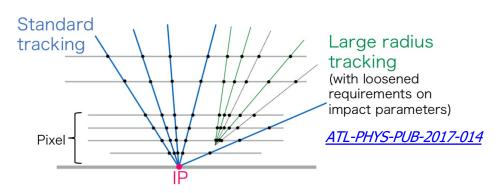
How to find LLPs?

- Rather than theory driven LLP searches are signature driven. Multiple scenarios are then possible:
 - They can be light or heavy, can travel fast or slow.
 - They can decay to quarks, leptons, gluons... or even to invisible particles, leaving missing transverse momentum.
- Anomalous ionization, displacements and lifetime are the key signatures.

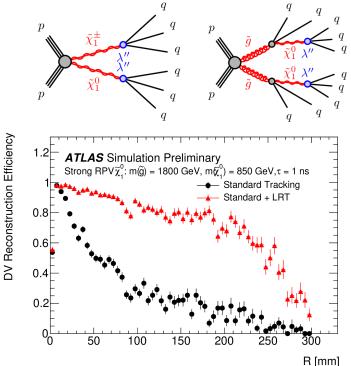


- Despite the different signatures, BSM LLPs have one thing in common: they are atypical topologies that offer appealing and challenging searches where algorithms, triggers and tools can be improved, as:
 - The estimation of non-standard backgrounds,
 - Loss of efficiency in reconstruction,
 - Reduced trigger performance.

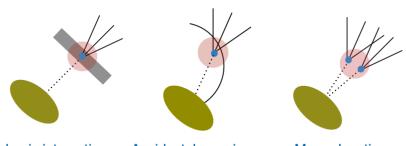
Introduction


Recent results

- A lot of searches in this area! Difficult to fit in a single talk!
- In the following few examples based on signatures.
 - In the backup, links to more measurements and overviews,


Jets + Displaced Vertices

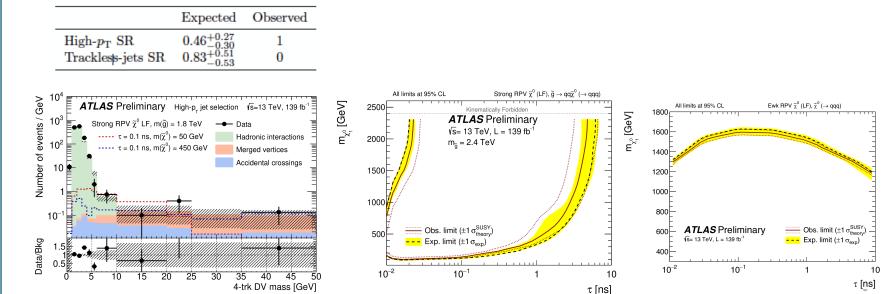
- Target: General search for heavy LLPs decaying in the Inner Detector in hadrons
- **Signature**: Looking for an excess in multi-jet events with Displaced Vertices with high mass and multiplicity.
- Algorithm: Displaced Vertex reconstruction possible up to 300 mm thanks to Large Radius Tracking → Example of how algorithms improves for the LLP searches.


 Two cut-and-count SRs, one targeting trackless jets (for ewkinos) and the other targeting high p_T jets (for gluinos).

Sensitivity to the EWK production is reached for the first time in this analysis!

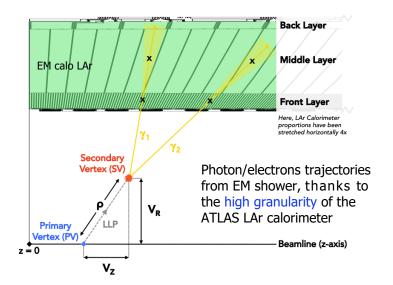
Jets + Displaced Vertices

 Background: rare hadronic events, accidental track-crossing and close-by secondary vertices

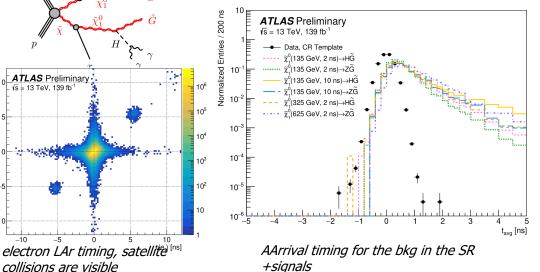


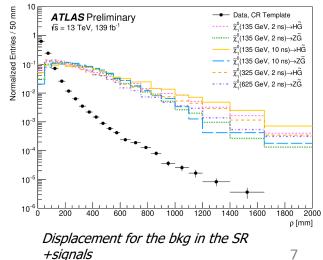
Hadronic interactions Accidental crossings

Merged vertices

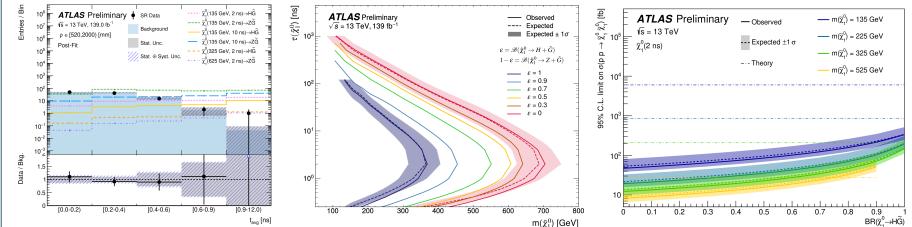

ATLAS-CONF-2022-054

- Jet-DV correlation is measured in a signal-free CR and used to estimate the background in the SR
- No excess \rightarrow limits are set on the SUSY benchmark models. At 95% CL, values up to 1.58 TeV for = 0.1 ns excluded, and the limit surpasses 1.5 TeV for all lifetimes in the range from 0.03 ns to 1 ns



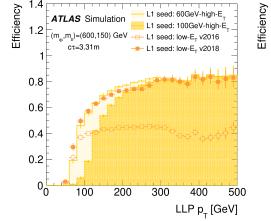

Displaced di-photon vertex

- Target: long lived heavy particles, originating displaced H→yy or Z→ee decays
- **Signature**: Exploit LAr arrival time (tavg) as well as the mass and 2D position (ρ) of the Displaced vertex.
- **Benchmark** model: gauge-mediated SUSY breaking model, LLP pair produced,
 - ^{*H/Z*} then decaying into H or Z.


ATLAS-CONF-2022-051

t(e,) [ns]

- Background: due to fake and mis-measured photons
- Likelihood fit of t_{avg} in different bins of ρ , background estimated from t_{avg} templates from CR
- No disagreement with S M observed \rightarrow strong limits on neutralino masses and lifetimes



Displaced Jets in Hadronic Calo

EXOT-2019-29 JHEP 06 (2022) 005

- Target: pairs of neutral long-lived particles decaying to SM fermions in the Calorimeter
- Benchmark model: Hidden Sector with a heavy neutral boson, φ, decaying to two long-lived neutral scalars, s, that p decay to pairs of SM fermions
- **Signature**: two narrow single jets, trackless and with an unusually high proportion of energy in the hadronic calo.
- **Trigger**: Dedicated CalRatio* triggers specifically designed for this search.
- Two search regions are defined for different LLP kinematic regimes.

* $logR = log_{10}(E_H/E_{FM})$

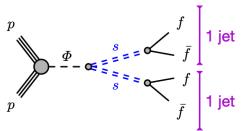
Trigger efficiency for simulated signal events as a function of the LLP p_T

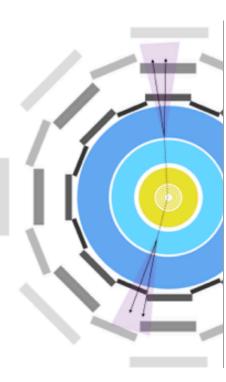
LLP L_{xy} [m] Trigger efficiency for simulated signal events as a function of the LLP Lxy

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

ATLAS Simulation

(m_,m_)=(600,150) GeV


1.2

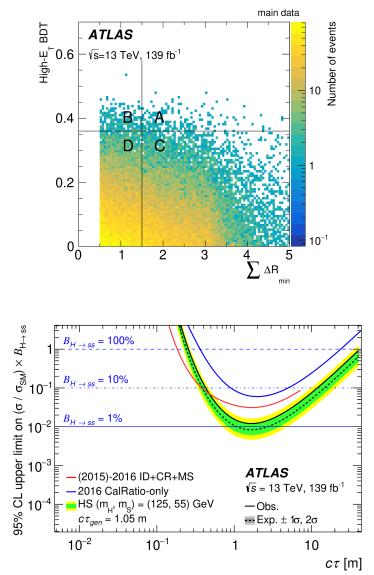

0.8

0.6

0.4

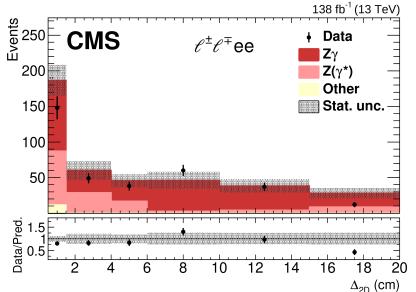
0.2

objects

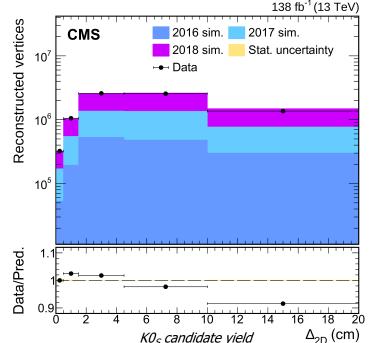

Displaced

Displaced Jets in Hadronic Calo

- Backgrounds:
 - Dominant is multi-jets: low probability to mimic signal, but dominant due to high cross-section → estimated using datadriven methods.
 - Subdominant: beam-induced background (BIB) and cosmic muons
- Use innovative ML techniques for signal-jet identification
- No disagreement with S M observed


→ For a SM Higgs boson with a mass of 125 GeV, branching ratios above 10% are excluded at 95% confidence level for values of ct between 20mm and 10m depending on the model.

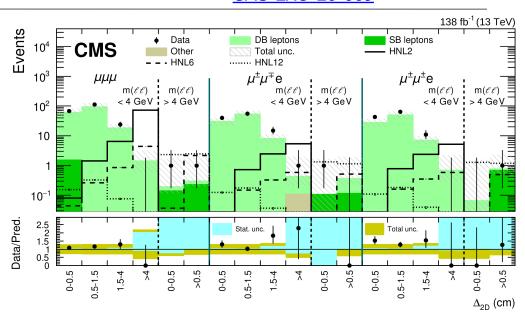
 \rightarrow Upper limits are also set on the cross-section times branching ratio for scalars with a mass of 60 GeV and for masses between 200 GeV and 1TeV.



Displaced Heavy Neutral Leptons

- Target: search for LL Heavy Neutral Leptons (N)
 - \bullet **Benchmark** model: right-handed Dirac or Majorana neutrinos, mix to SM- υ
 - **Signature**: Prompt lepton and displaced vertex with two leptons
 - Needed well reconstructed displaced leptons
 - Reconstruct vertex from displaced lepton pair
 - Validation of displaced reconstruction
 - Displaced electrons: asymmetric photon conversions
 - Displaced muon: J/ψ from B, and K_s decays

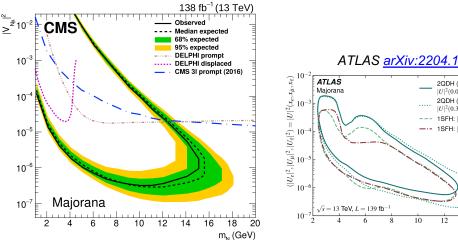
Events are selected in the final states with four leptons, with one (or two) of the leptons identified as displaced electron(s). The distribution of the $\Delta 2D$ variable is presented (transverse displacement of vertex).

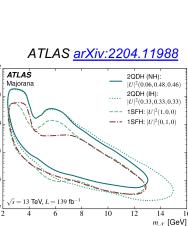

 W^+

Ν

 W^+

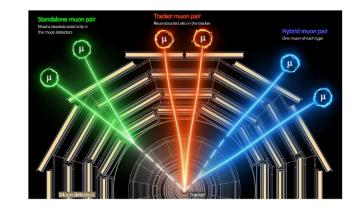
Displaced Heavy Neutral Leptons CMS CMS-EXO-20-009

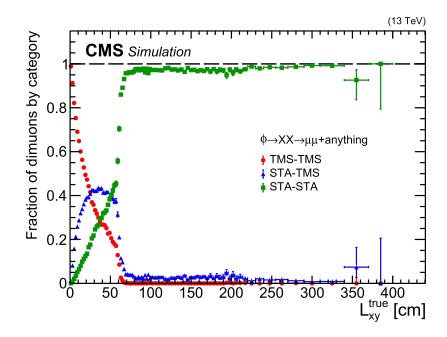

- Data-driven Bkg Estimation
 - Tight-to-loose ratio with • lepton isolation. Two main type of bkg: Single Background (SB) leptons = uncorrelated sources for the leptons or Double Background (DB) leptons = leptons produced in same decay chain.


Results

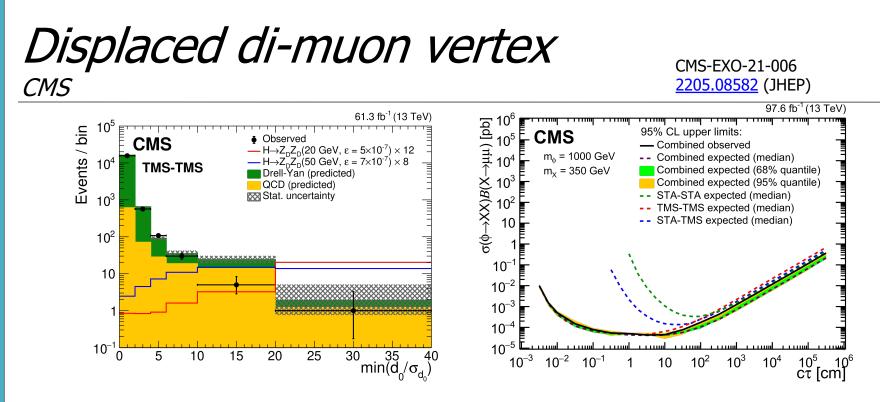
- No significant excess observed
- Constraints are derived for • models with a single HNL generation of Majorana or Dirac nature, coupled exclusively to electrons or muons.
- Similar analysis in ATLAS arXiv:2204.11988 and in LHCB <u>https://arxiv.org/pdf/2011.0</u> 5263.pdf

Search regions for the µµX final states. Predictions for signal events are shown for several benchmark hypotheses for Majorana HNL production.

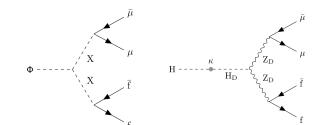

Exclusion for masses from 1 up to 16.5 GeV and squared mixing parameters as low as 3.2×10^{-7} .

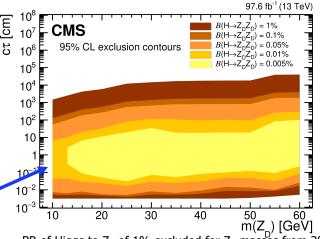


Displaced di-muon vertex


CMS-EXO-21-006 2205.08582 (JHEP)

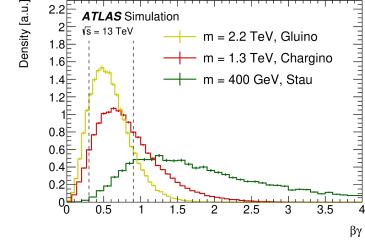
- **Target**: long lived particles decaying to muons at distances ranging from few tens of um to several meters
- **Signature**: pair of OS charged muons originating from a common displaced vertex.
 - Splitted in three categories that are optimized separately
 - Triggered with muons only in muon chambers (no vertex constraint).
- Background:
 - Cosmics, multijets, low-mass... suppressed with selection.
 - Prompt misreconstruction estimated from control region with $|\Delta \Phi(p_T \mu \mu, L_{xy})| > 3\pi/4$.
 - Non prompt estimated from control region with SS dimuon vertices.




Displaced objects

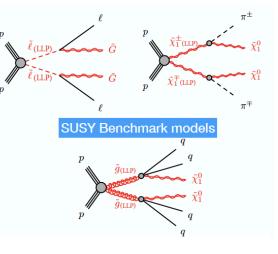
No excess observed \rightarrow Exclusion limits set on a model with BSM heavy scalar decaying to LLPs and on a Hidden Abelian Higgs Model (HAHM) with dark photons Z_D :

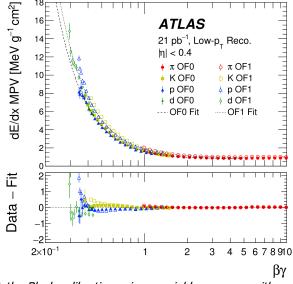
Complemented with a scouting search based by a dimuon trigger stream with low transverse momentum thresholds, to explore otherwise inaccessible phase space at low dimuon mass and nonzero displacement from the primary interaction vertex: <u>EXO-20-014</u>, <u>JHEP 04 (2022) 062</u>


BR of Higgs to Z_D of 1% excluded for Z_D masses from 20 to 60 GeV and lifetimes from few tens of μ m to 100 m

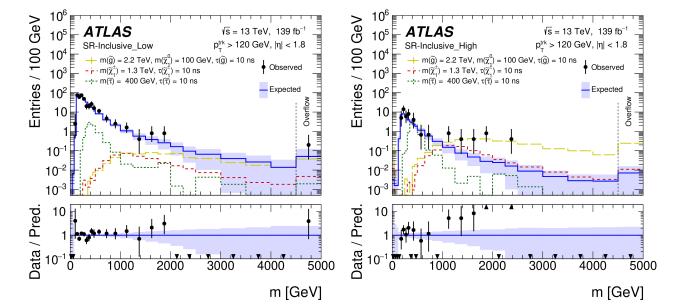
ATLAS

Pixel dE/dx


- **Target**: massive charged LLPs, having Low $\beta \rightarrow$ Large ionization.
- Signature: Selection exploiting missing E^T and wellisolated track or muon with large pT and with large dE/dx
- From Pixel dE/dx \rightarrow Bethe-Bloch $\rightarrow \beta \gamma$
 - Mass estimate from βy and momentum
- 8 signal regions targeting different LLP masses and lifetime regimes
- Fully data-driven background estimation (based on pseudodata generation from CRs)



The ranges 0.3<\u03b3y<0.9 indicated by vertical dashed lines approximately correspond to the acceptance of this search from the dE/dx

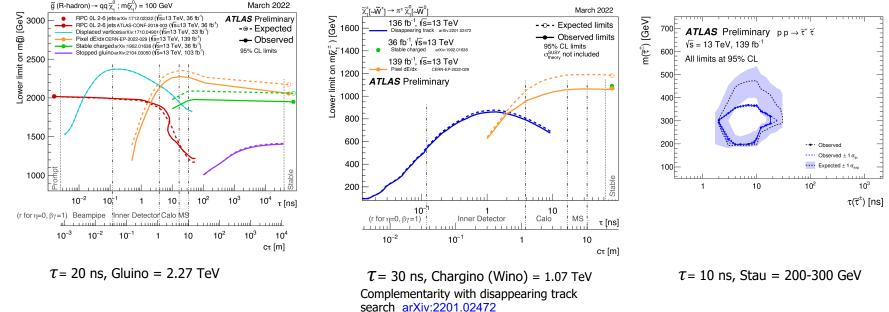

 $\frac{p_{\text{tracker}}}{\beta \gamma_{(\text{d}E/\text{d}x)}}$

 $m_{\mathrm{d}E/\mathrm{d}x} =$

Bethe-Bloch calibration using special low u runs, with pT>100MeV reconstruction

Pixel dE/dx

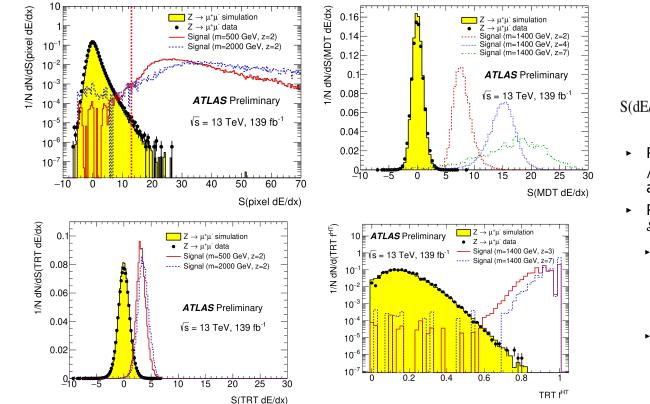
• For most of the SR, the observed data agrees well with the predicted background.


Largest significance of 3.6σ is observed for a mass window [1.1, 2.8] TeV in high-dE/dx SR: in this window, 0.7 ± 0.4 events are expected and 7 events are observed. Global significance: 3.3σ .

- No instrumental pathologies were found in the observed tracks and individual pixel cluster shapes.
- Crosscheck of momentum reconstruction between ID and MS for muon candidate tracks.
- Time-of-flight measurements of these excess event were also extracted from muon and calorimeter systems. → All of excess events candidate tracks were observed to be well consistent with β = 1 within the data-driven timing resolution.
- The excess events are **not compatible** with the benchmark signal models considered in this search.

Gemme - LLP@LHC

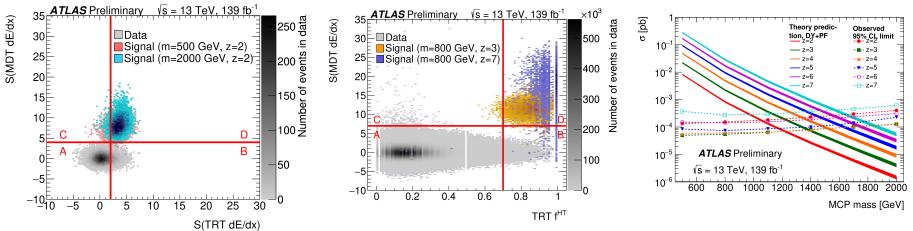
Pixel dE/dx ATLAS


• For most of the SR, the observed data agrees well with the predicted background.

- Results: unique and stringent limits to gluino *R*-hadrons, chargino (wino) and sleptons for lifetime > a few ns. Well complementary to the "disappearing Track" search that is instead looking for short tracks.
 - Due to the presence of the excess, the observed limit is weaker than expected.

- Target: Long lived Multi-Charged Particles.
- **Benchmark** model: MCP produced in pairs via Drell-Yan or photon-fusion processes. Exotic heavy fermions with high electric charge (z=2 and $3 \le z \le 7$)
- **Signature**: hits in the ID + MS \rightarrow reconstructed as muons, with anomalously large dE/dx significance in multiple subsystems (Pixel, TRT, MDT) and/or fraction of high-threshold TRT hits.
 - Missing E^T, single muon and late-muon triggers for maximum signal acceptance

- $S(dE/dx) = \frac{dE/dx_{candidate} \langle dE/dx_{muon} \rangle}{\sigma(dE/dx_{muon})}$
- Require at least one track with p_T /z > 50GeV in |η| < 2.0 identified as an isolated muon.
- Require anomalously large *S*(d*E*/d*x*) in multiple subsystems:
 - *z* = 2 : S (d*E*/d*x*, pixel) > 13.0, then
 S(d*E*/d*x*, TRT) > 2.0 & S(d*E*/d*x*, MDT) > 4.0
 - → z > 2: TRT high-threshold hits fraction (f_{HT}) > 0.7 & S (dE/dx, MDT) > 7.0

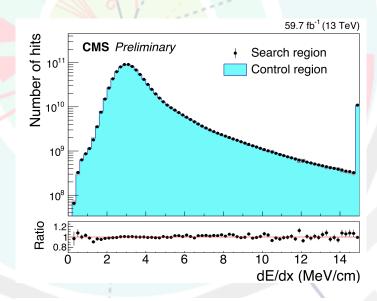

Multi-charged particles

ATLAS

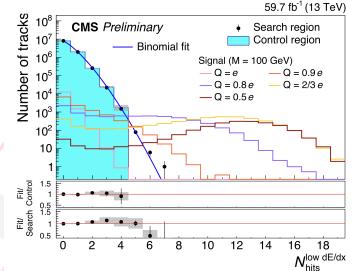
- ATLAS-CONF-2022-034
- Background due to random fluctuations of the energy loss
- Data driven (ABCD) background estimation, assuming two final discriminants are ore orthogonal each other
 - z = 2: S(dE/dx, TRT) & S(dE/dx, MDT)
 - z > 2: $f_{\rm HT}$ & S(dE/dx, MDT)

• No excess! \rightarrow Limits set on MCP production cross section for MCP mass up to ~1.7 TeV

Se	election	$N_{ m data}^{ m A \ observed}$	$V_{\rm data}^{\rm A \ observed}$ $N_{\rm data}^{\rm B \ observed}$		$N_{ m data}^{ m D\ expected}$	$N_{ m data}^{ m D \ observed}$
	<i>z</i> = 2	24 294	4039	9	1.5 ± 0.5 (stat.) ± 0.5 (syst.)	4
	z > 2	192 036 934	15004	441	0.034 ± 0.002 (stat.) ± 0.004 (syst.)	0



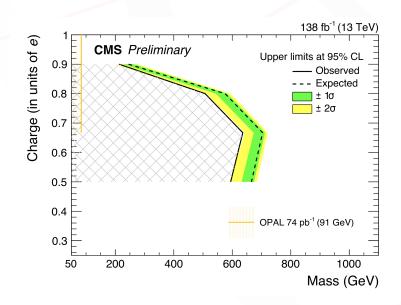
Fractional-charged particles

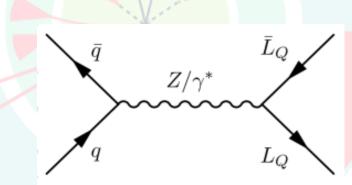

CMS

CMS

- **Target:** Long lived Fractional Charge Particles (FCP)
- Signature: High p_T track matched to a muon track
 - The number of tracker hits with low dE/dx N_{hits} low_dE/dx</sub> is expected to be higher and it is used as main discriminant
 - Background arises mainly from muons from W or Z decays:
 - Detector effects (radiation damage, pixel inefficiencies, edge hits...) mitigated with track/hit selection
 - Modelled with a fitted binomial distribution to extrapolate bkg from low to high N_{hits}^{low_dE/dx}

CMS-EXO-19-006

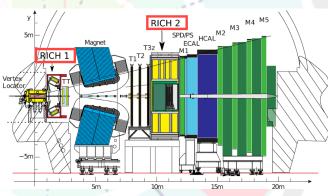


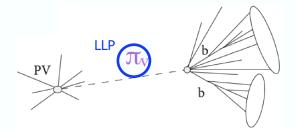

Fractional-charged particles

CMS

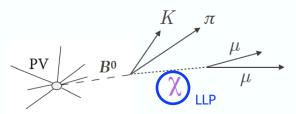
CMS

- Exclusion limits set on the crosssection of FCPs production in Drell-Yan:
 - Best limits are obtained for intermediate charges. Excluded 2/3e for σ above 0.283 fb and masses of 636 GeV



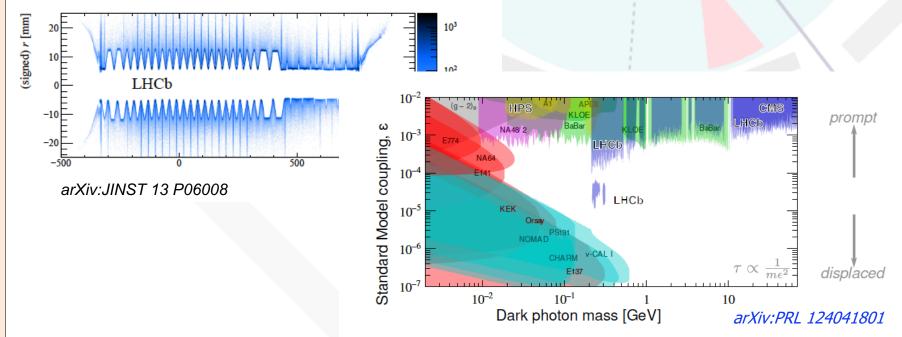

CMS-EXO-19-006

LHCb

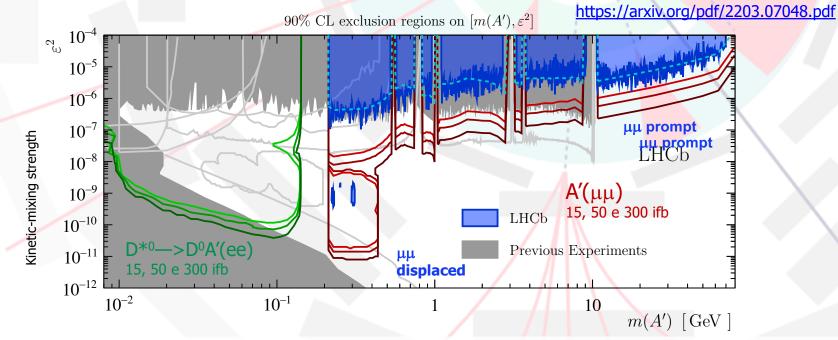

- LHCb provides unique coverage complementary to ATLAS and CMS. The detector is actually designed to reconstruct "displaced" vertices from B-meson decays.
 - This has been successfully adapted for LLP searches.
 - LHCb proved to be competitive in many signatures. low masses, low lifetimes and LLP from B/D decays

produced in pp collision

produced in B/D decays

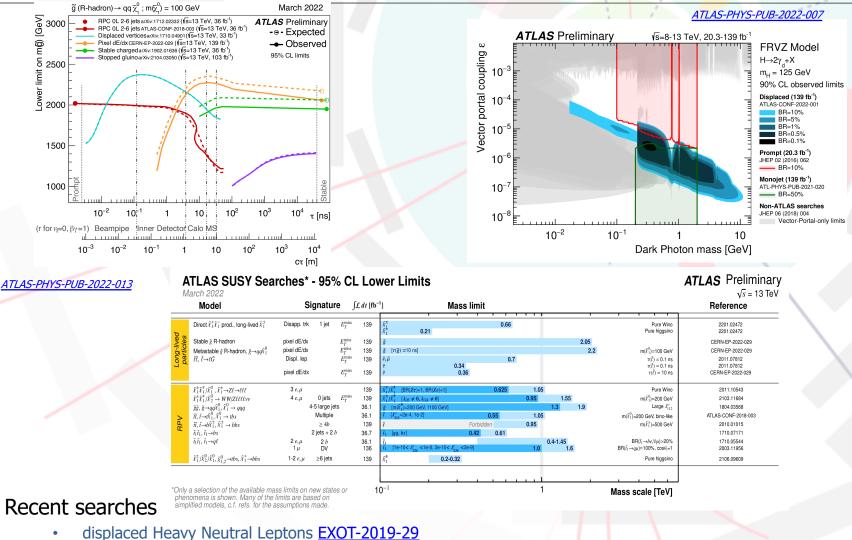


- Moreover: via the RICH detector LHCb is sensitive to tag charged particles slower than speed of light by O(%) to O(per mill).
 - Tracks are reconstructible for $\beta \ge 0.8$ and get full-efficient for $\beta > 0.95$
- ✓ Recent publication for massive LLP decaying semileptonically in LHCb
 <u>ARXIV:2110.07293</u> → **BACKUP**


- Minimal model parameterised by $m_{A'}$ and mixing strength ϵ .

- LHCb $\sigma(\tau) = 50$ fs: 'prompt' vs 'displaced' signatures
- Displaced signature:
 - A' radial flight distance > 5mm: ~ no prompt background
 - Background: from photon conversions in the first detector layers
 - Special beam-gas runs: high-precision material map to veto

- In LHC-Run 3, just started, expected exceptional sensitivity to low-mass displaced dilepton signatures thanks to mass resolution, excellent vertexing and online selection allowed by trigger-less readout.
 - Extend reach for dark photon A'→µµ & new feasibility to probe radiative charm decay.

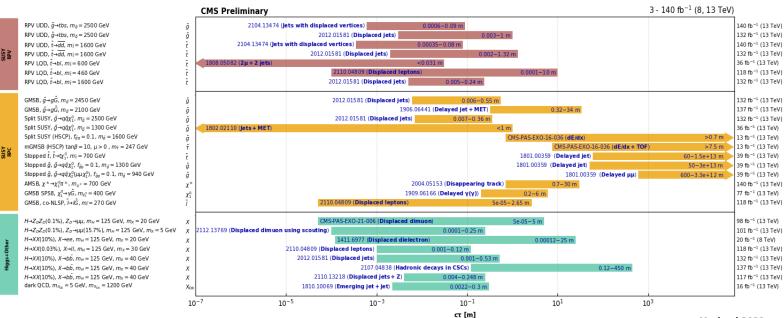


 Dimuon search (prompt and displaced) also targets low-mass resonances, decaying promptly or displaced. Limits set up to 3 GeV <u>https://arxiv.org/pdf/2007.03923.pdf</u>

Conclusions

- There is a strong increasing interest in BSM LLPs as our current extensive look at 13 TeV data yields impressive agreement with Standard Model expectations.
- As LLP show atypical signatures, ad-hoc algorithms are coming, allowing to explore a variety of searches in a model-independent manner.
 - Just few of them have been shown here.
- While results are still coming from the previous data-taking, Run 3 will give an opportunity to boost even further these searches with new triggers(*) deployed and Phase-1 detector upgrade.
 - New ideas(*), such as CODEX-b, Mathusla and FASER, involve also faraway extension of the detectors coverage and may provide additional information on longer lived particles.

ATLAS Summary Plots



- displaced jets in the hadronic calorimeter <u>EXOT-2019-23</u>
- displaced jets in the Muon Spectrometr <u>EXOT-2019-24</u>
- displaced lepton jets based on dark photon model EXOT-2019-05

CMS Summary Plots

Long Lived summary plot

Overview of CMS long-lived particle searches

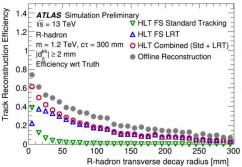
......!t!

Selection of observed exclusion limits at 95% C.L. (theory uncertainties are not included). The y-axis tick labels indicate the studied long-lived particle.

Moriond 2022

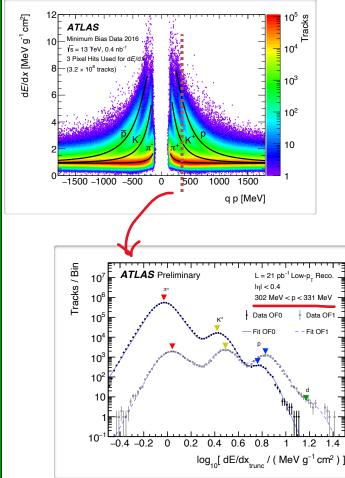
Analysis	Signature	Displacement	Mass
CMS-EXO-18-003	Displaced (di)leptons	Within pixel tracker	> 30 GeV
CMS-EXO-20-014	Displaced dimuon (with vertex)	Within pixel tracker	> 200 MeV
CMS-EXO-21-006	Displaced dimuon (with vertex)	Tracker + muon system	> 10 GeV
CMS-EXO-20-003	Displaced jets + Z	Within tracker	> 15 GeV

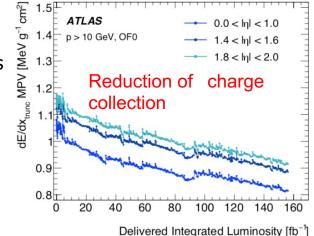
_	 		
ļ		Outside of CMS	> 100 GeV


ن

<u>Overview</u>

Trigger: Extending the searches to LLP


- Long-lived particles (LLP) can have unique signatures and trackshapes inside the ATLAS detector , and existing conventional ATLAS triggers can become a limiting factor
- As of Run-3, the ATLAS collaboration have implemented new tracking algorithms for the High Level Trigger (HLT). This was made possible with advancement in ATLAS algorithms and CPU technologies.
 - Full detector tracking (without a need for region of interest) will be available at O(10kHz). ATL-COM-DAQ-2021-003
 - LRT tracks are reconstructed either: **ATL-COM-DAQ-2022-023**
 - 1) Globally: From hits that are not associated to prompt tracks.
 - 2) In an RoI seeded by a muon, electron or jet particle type in the trigger.
 - Disappearing track trigger to identify Charged LLP particles that decay inside the tracker


 ² 14 ATLAS Simulation Preliminary

Pixel dE/dx - Calibration

- Time-over-threshold from pixel sensors \rightarrow **charge** measurement
- dE/dx corrected to account for radiation damage and $\boldsymbol{\eta}$ dependence
- Average dE/dx is evaluated from all the sub-leading pixel clusters

- Calibration performed in a special dataset with reconstructed tracks down to p_T>100 MeV (standard is > 500 MeV).
- Fitted MPV of dE/dx for known particle species \rightarrow Calibrated MPV- $\beta\gamma$ relation

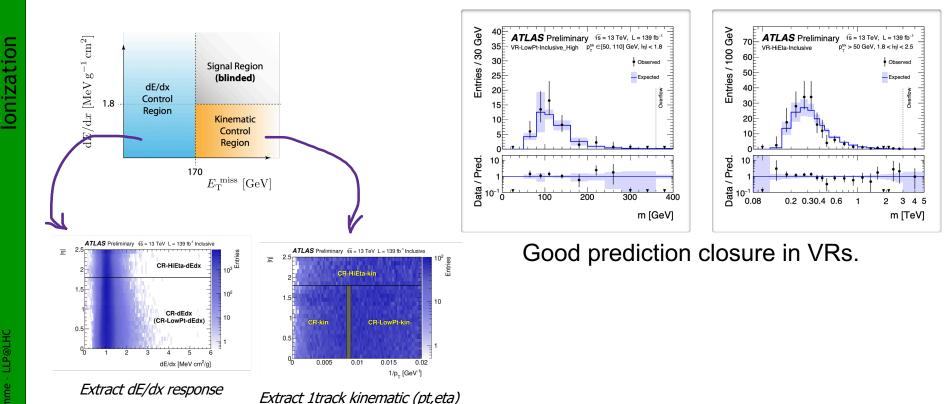
$$\mathrm{MPV}_{\mathrm{d}E/\mathrm{d}x}(\beta\gamma) = \frac{1 + (\beta\gamma)^2}{(\beta\gamma)^2} \left(c_0 + c_1 \log_{10}(\beta\gamma) + c_2 \left[\log_{10}(\beta\gamma) \right]^2 \right)$$

Gemme - LLP@LHC

Pixel dE/dx - Background

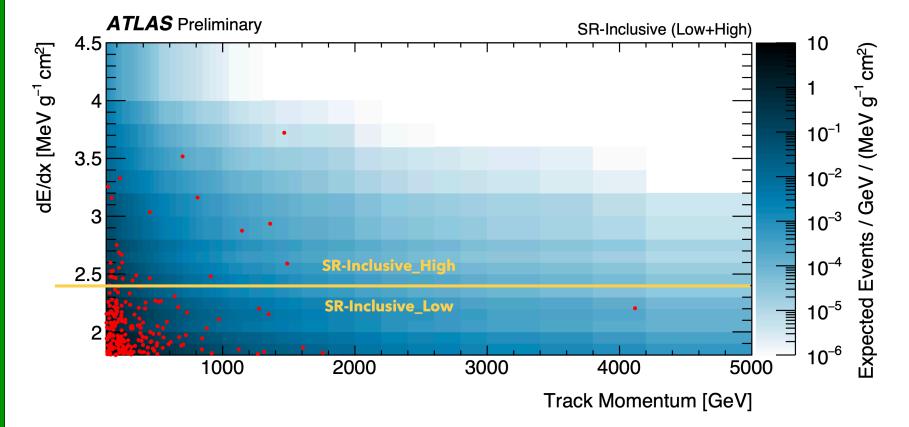
ATLAS

arXiv:2205.06013


Basic assumption for data-driven estimation:

SM particles are ~MIP.

 \rightarrow Kinematics and dE/dx response are independent.


(1) Random picking of (pT,eta) from the kinematic template.

- (2) Random picking of dE/dx from the same eta of the dE/dx template.
- (3) Construct mass and normalize events at m<160 GeV.

Pixel dE/dx - Checks **ATLAS**

Displaced photons ATLAS

ATLAS-CONF-2022-017

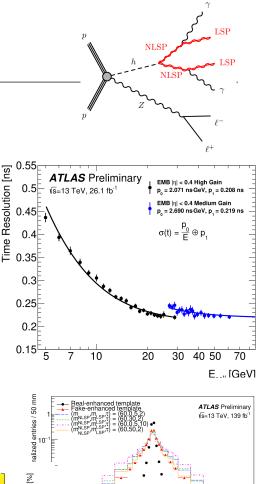
- Target: Similar to the diphoton analysis except that the photons are not required to originate from the same vertex \rightarrow search is performed for delayed and non-pointing photons originating from the displaced decay of a neutral long-lived particle.
 - Electromagnetic calorimeter is exploited to precisely measure the arrival time (tavg) and trajectory of photons.
- Benchmark model: scenario where the LLPs are pairproduced in exotic decays of the 125 GeV Higgs boson, and each LLP subsequently decays to a photon and a particle that escapes direct detection.

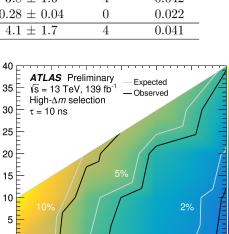
Background only fit

1.0 - 1.5

(50 40 10)

1.5 - 12


Region	Requirements	Expected	Observed	$\sigma_{\rm vis}^{95}$ [fb]
1γ	$1.5 < t_{\gamma} < 12 \text{ ns}, -\Delta z_{\gamma} - > 300 \text{ mm}$	3.8 ± 1.6	4	0.042
$\geq 2\gamma$	$1.0 < t_{\gamma}^{'} < 12 \text{ ns}, -\Delta z_{\gamma}^{'} - > 300 \text{ mm}$		0	0.022
$\geq 1\gamma$		4.1 ± 1.7	4	0.041

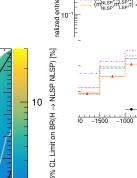

m_{LSP} [GeV]

0 <mark>=</mark> 30

35

40

45


50

55

m_{NLSP} [GeV]

60

Events 10⁶

10⁵

10

 10^{3}

10

10

10

Data/Bkg

LAS Preliminary

0.2 - 0.4

0.4 - 0.6

0.6 - 0.8

0.8 - 1.0

channel, |Az | < 50 mn

s=13 TeV. 139 fb

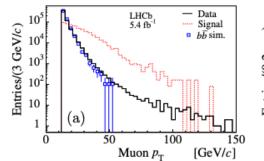
Low- Δm selection

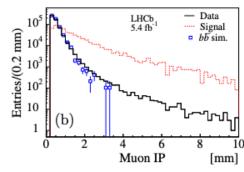
0 - 0.2

Photon pointing (mn

Massive LLP, semileptonic decay

LHCb, Run2


LHCb


- <u> ARXIV:2110.07293</u>
- Search addresses a subset of models featuring massive long-lived particles with a measurable flight distance, decaying semi-leptonically.
 - The LLP signature is a displaced vertex accompanied by an isolated muon with high transverse momentum. The LLP lifetime range is from 5 ps to 200 ps.

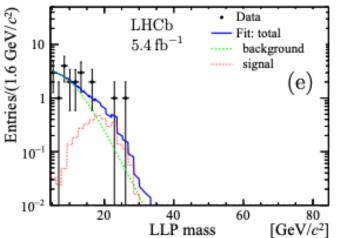
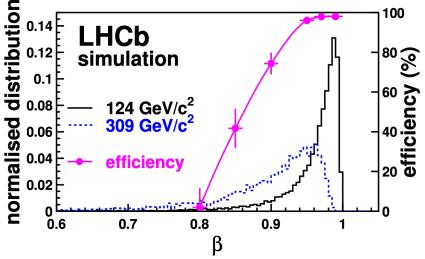
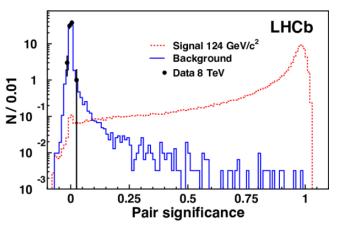


Figure 1: LLP production processes considered in this paper, where the $\hat{\chi}_1^0$ represents the LLP: (a) di-LLP production via a scalar particle h^0 ; (b) non-resonant, direct LLP production from quark interactions, where X is a stable particle, with mass identical to the LLP. The LLP decays into a muon and two quarks: $\hat{\chi}_1^0 \rightarrow \mu^+ q_i q_i (\mu^- \bar{q}_i \bar{q}_j)$.

- This study benefits from the excellent VELO vertex reconstruction and by the low pT threshold of the muon trigger.
- Background is dominated by bb events and is reduced by tight selection requirements, including a dedicated multivariate classifier.
- NO EXCEES IS FOUND: upper limits at 95% CL set on the cross-section times branching fractions.




Charged Massive LLP

- LHCb can exploit the RICH detector: sensitive to tag charged particles slower than speed of light
 - Tracks are reconstructible for $\beta \gtrsim 0.8$ and get full-efficient for $\beta > 0.95$
 - → based on the response of the ring imaging Cherenkov detectors to distinguish the heavy, slow-moving particles from muons.

Selection

- Events triggered by a single muon of $p_{\rm T} > 15 {\rm GeV}$ in $1.8 < \eta < 4.9$.
- Requires to have an opposite-charged dimuon from IP, with $m_{\mu\mu}$
 - > 100GeV.
 - \rightarrow Invariant-mass-dependent momentum threshold for accepting $\beta > 0.8$ signals.
- Signal Selection via a ANN trained per track
 - Energy deposits in detector subsystems in VELO, ECal, HCal.
 - A likelihood variable constructed from RICH information.
 - \rightarrow **DLLx**: Delta of log-likelihood (DLL) for particle hypothesis changed from π^{\pm} to μ , e, K, p.
- The Bkg. sample is taken from simulation.
- The product of the score for the dimuon system (pair significance) is used as the discriminant, reducing the SM dimuon background by a factor of 10⁻⁵.

LHCb

250

7 TeV

8 TeV

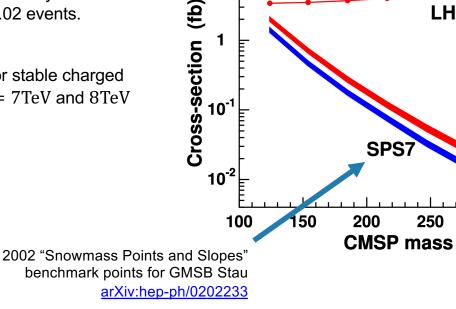
8 TeV

7 TeV

 (GeV/c^2)

350

300

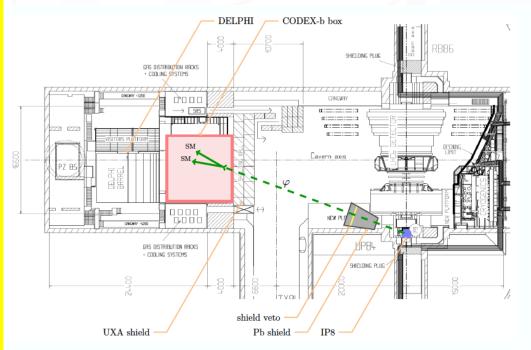

Charged Massive LLP LHCb, Run1

Timing

Data in $\sqrt{s} = 7,8$ TeV with integrated luminosity of 3.0 fb⁻¹. Estimated background events in SR: ~0.02 events. Observed 0 events.

95% CL cross-section upper limits set for stable charged particle mass in [124, 309] GeV for $\sqrt{s} = 7$ TeV and 8TeV individually.

- 7 TeV: 6.1 fb 10.7 fb
- 8 TeV: 3.4 fb 5.7 fb


10

10⁻¹

Extending the searches to ULLP

✓ CODEX-b to search for decays-in-flight of LLPs generated at IP8.

- 10x10x10m³ box, around 25 m from IP, 1% angular coverage
- Tracking detectors → feasibility based on RPC with 1 cm2 granularity and 50- 100 ps timing resolution
- Extra shield close to IP8 to attenuate muon and neutral hadrons. Thin active veto for secondaries inside the shield.

$b \rightarrow s\phi$ Higgs-scalar mixing

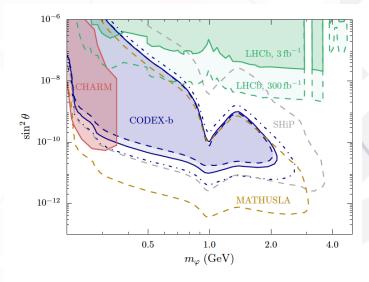
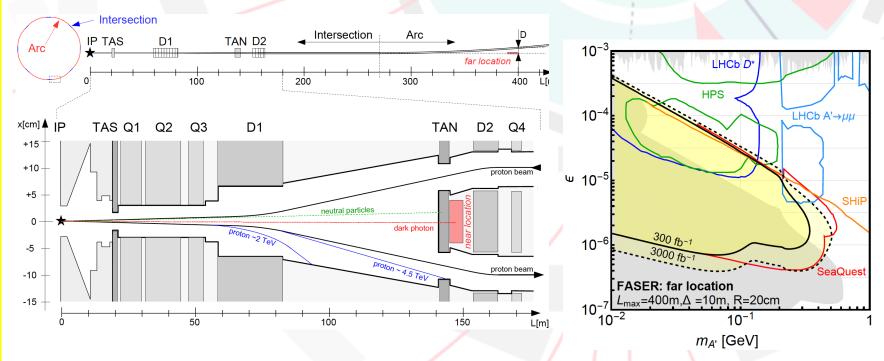
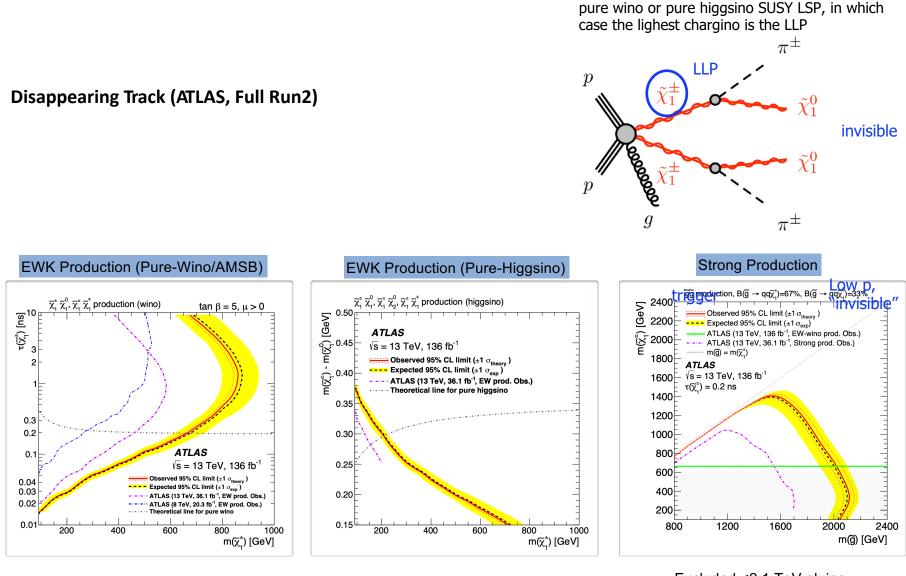
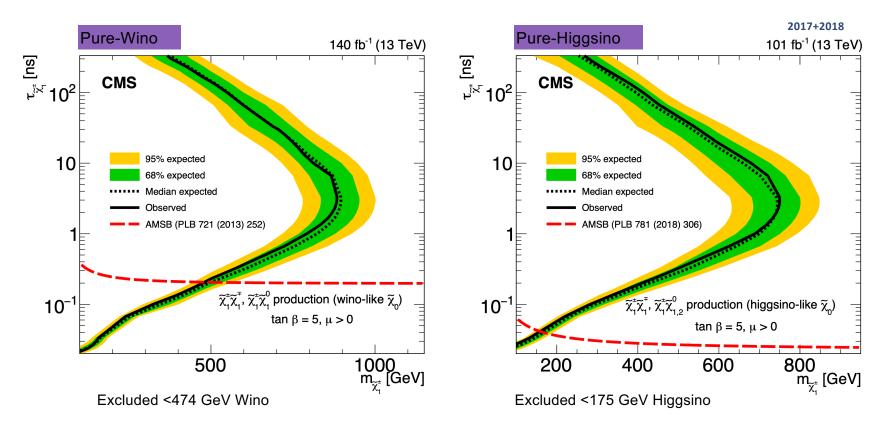




FIG. 3. CODEX-b reach for $B \to X_s \varphi$ in the $s_{\theta}^2 - m_{\varphi}$ plane. Solid (dashed) blue line assumes 100% (Tab. []) tracking efficiency. Dot-dashed line indicates the reach for $\mathcal{L} = 1 \text{ ab}^{-1}$.

Extending the searches to ULLP

- FASER is a small to be placed in the very forward region of ATLAS/CMS, a few 100m downstream of the IP, to search for new light and weakly interacting particles
 - Dark photon searches either produced in meson decays $(\pi^0 \rightarrow A'_{\gamma})$, trough dark bremsstrahlung pp \rightarrow pA'X and durect QCD qq \rightarrow A'X


Excluded <660 GeV Wino

Excluded <210 GeV Higgsino

Excluded <2.1 TeV gluino for 300 GeV chargino

Stringent limits to well-inspired DM scenarios by a dedicated search!

Disappearing Track (CMS, Full Run2)

3 9