Parton physics of mesons in the limit of large number of colors

Rajamani Narayanan and Nikhil Karthik

Main reference: arXiv 2205.02252, Published in Physical Review D 106 (2002) 014503

RN supported in part by NSF grant PHY-1913010

NK supported in part by DOE grants DE-AC05-06OR23177 and DE-FG02-04ER41302

51st International Symposium on Multiparticle Dynamics (ISMD 2022)

Why is QCD interesting in the limit of large number of colors?

- Strong interactions taken in isolation has no free parameters non-abelian gauge fields interacting with massless fermions
- A classically scale invariant theory breaks scale invariance upon quantization and generates a rich spectrum of particles
- 't Hooft suggested using the number of colors as a free parameter
- The theory in the limit of large number of colors has all the important features of QCD with three colors
- Numerical simulations of various physical quantities over three decades has shown that three color QCD is close enough to infinite color QCD

Deconfinement phase transition in 4D:

partial reduction

$$a \to 0, L_c \to \infty$$

Practically, one can expect to use L~ 12 or 14 to use very fine lattices and do "OPE without apology"!

Other ideas: e.g., Twisted Eguchi-Kawai to prevent center symmetry-breaking

Idealization of hadronic physics in 't Hooft limit

Long-distance behavior is a tower of noninteracting stable mesons:

Quark-hadron duality exact!

Numerology:

Some identification of scale in QCD and large-Nc required for GeV units.

$$\sqrt{\sigma} = 440 \text{ MeV}$$

Lattice setup for the first calculation

$$L = 8, N_c = 17$$

$$\sqrt{\sigma}a = 0.254$$

$$P_z = \frac{2\pi n_z}{(L \times N_c)}$$

$$n_z \in [0, 16]$$

FIG. 1. (A) Schematic of large- N_c continuum reduction for quasi-PDF operator evaluated within a pion. The gauge fields on $\approx N_c \ell$ sized box are obtained as replicas of gauge fields within a ℓ sized box, with $\ell \approx T_c^{-1}$, the deconfinement temperature. The quarks hopping on such crystalline configuration are labeled by their positions in periodic ℓ^4 box and their Bloch momenta. The correlation functions in the larger box can be obtained using lattice implementation of momentum space Feynman diagrams that use quark propagators in ℓ^4 box. (B and C) The momentum space Feynman diagrams implemented directly on the lattice. The lines are quark propagators. The arrows show the off-shell 4-momentum injected at the vertices. The 2-point function of pion is shown in B. The 3-point function of quasi-PDF operator (double line) with pion creation and annihilation operators is shown in C.

PDF as light-like separated q-q correlation

$$\mathcal{M}_{LF}(z^{-}P^{+},\mu) = \frac{1}{2P^{+}} \langle H(P) | \bar{\psi}(z^{-})W_{+}(z^{-},0)\gamma^{+}\psi(0) | H(P) \rangle$$

$$f(x,\mu) = \int \frac{d\nu}{2\pi} e^{-ix\nu} \mathcal{M}_{LF}(\nu,\mu)$$

Imaginary part of quasi-PDF matrix element

disconnected diagram 1/N_c suppressed.
Not easy in real-world LQCD.

Lattice data from M.C. and fits

Fits to leading-twist large-N_c NLO OPE

$$\lambda_s = \left(\frac{11}{12\pi} \ln\left(\mu^2/\Lambda^2\right)\right)^{-1}$$

set values similar to QCD

$$\Lambda \sim 0.3 \; \mathrm{GeV} \quad \mu = 2 \; \mathrm{GeV}$$

$$2\langle x \rangle_{u+\bar{u}} = 0.60(2)$$
$$\langle x \rangle_g = 0.40(2)$$
$$2\langle x \rangle_{u-\bar{u}} = 0.47(2)$$

$$2\langle x\rangle_{u+\bar{u}}=0.50(2)$$
 (infer) $\langle x\rangle_g=0.50(2)$

Large-N_c parton phenomenology

- ~50% pion momentum carried by gluons might be quite universal to Yang-Mills theories.
- Quantitative difference because of missing sea quarks in large-N pion?

Evolution as a mechanism for difference in large-Nc and QCD?

Evolution as a mechanism for difference in large-Nc and QCD?

Disagreement small and effect of difference in DGLAP is also small

Evolution as a mechanism for difference in large-Nc and QCD?

Disagreement substantial — effect of difference in DGLAP is in the right direction