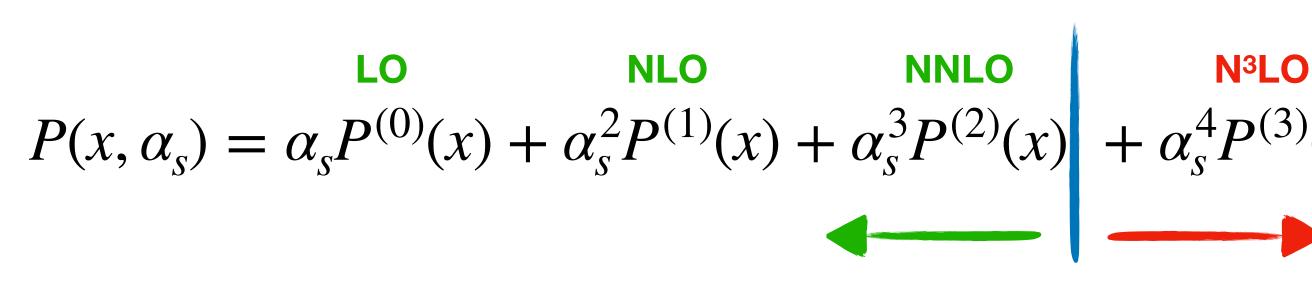
ISMD 2022 Conference

Beyond NNLO in Global PDF fits MSHTaN³LO Parton Distribution Functions

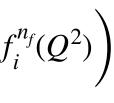
Jamie McGowan, Thomas Cridge, Lucian Harland-Lang and Robert Thorne **August 2022**



Full information in recent article: JM et. al., <u>2207.04739</u>

What is a theoretical uncertainty? And also... why do we care?

• Leading source from **Missing High** different areas these occur in F_2 .



- Current knowledge is up to NNLO, with higher orders unknown.
- Potentially large corrections hiding in higher orders beyond theory truncation.
- Already progress in calculating features at N³LO^[1-11].

• Leading source from Missing Higher Orders in perturbation theory - many

$$F_{2}(x,Q^{2}) = \sum_{\alpha \in \{H,q,g\}} \sum_{i \in \{q,g\}} \left(C_{q,\alpha}^{GMVF,n_{f}+1} \otimes A_{\alpha i}(Q^{2}/m_{h}^{2}) \otimes f_{i}^{n_{f}}(Q^{2}) + C_{H,\alpha}^{GMVF,n_{f}+1} \otimes A_{\alpha i}(Q^{2}/m_{h}^{2}) \otimes f_{i}^{A} P^{(3)}(x) + \dots \right)$$

$$\frac{df}{d \ln \mu_{f}^{2}} = P \otimes f$$

Theoretical Uncertainties in a Global PDF Fit $\begin{cases} P(T|D) \propto \exp\left(-\frac{1}{2}M^{-1}(\theta' - \overline{\theta}')^2 - \frac{1}{2}(T' - D)^T H(T' - D)\right) \\ P(\theta') = \frac{1}{\sqrt{2\pi\sigma_{\theta'}}}\exp(-\theta'^2/2\sigma_{\theta'}^2) \end{cases}$

$$P(T|D) \propto \exp\left(-\frac{1}{2}(T-D)^T H_0(T-D)\right)$$

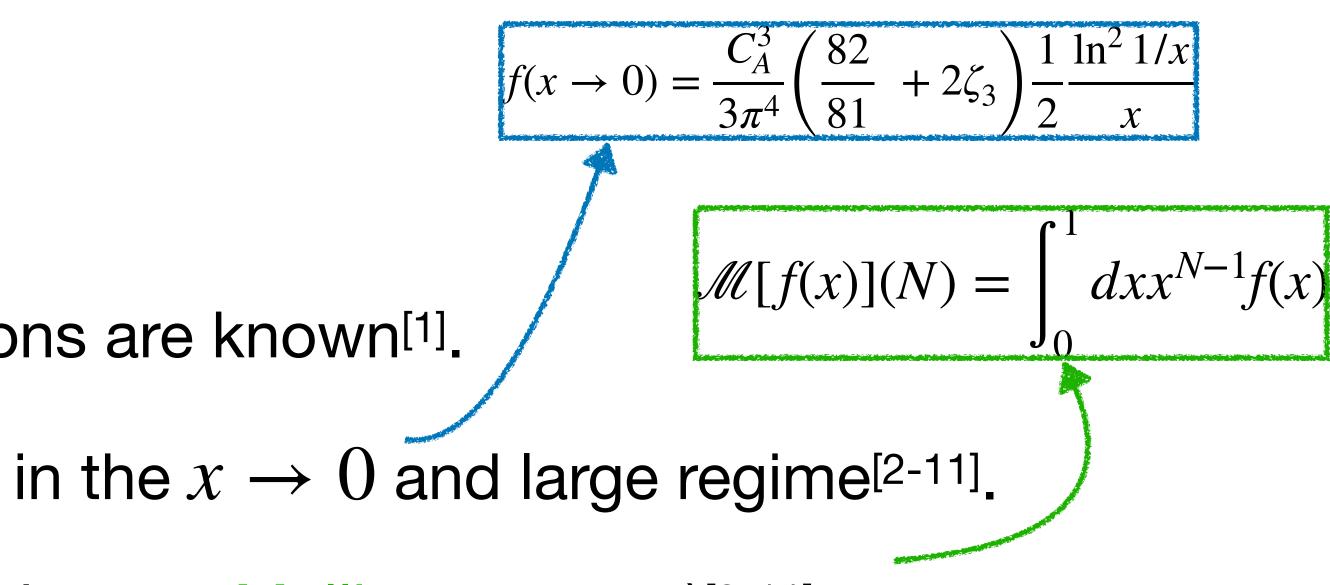
- we have?
- by a prior probability distribution^[12].
- close to the behaviour already known).

• Do we need to wait for a full description of the next order to be able to use the knowledge

• Can attempt to parameterise the higher order effects with a nuisance parameter defined

• Allow the fit to move these N³LO parameters (with a **penalty attached** to ensure we stay

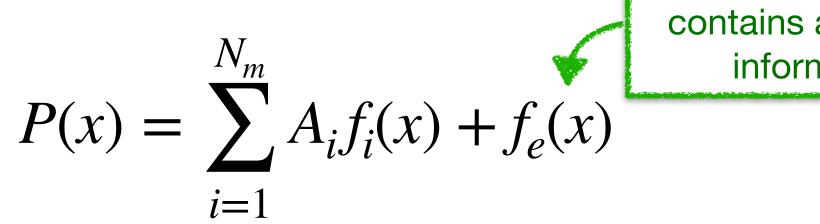
With these alterations, we follow the **same** practice as set out in the MSHT20 NNLO PDF fit - the exact same global fit is done to approximate $N^{3}LO$ (a $N^{3}LO$).

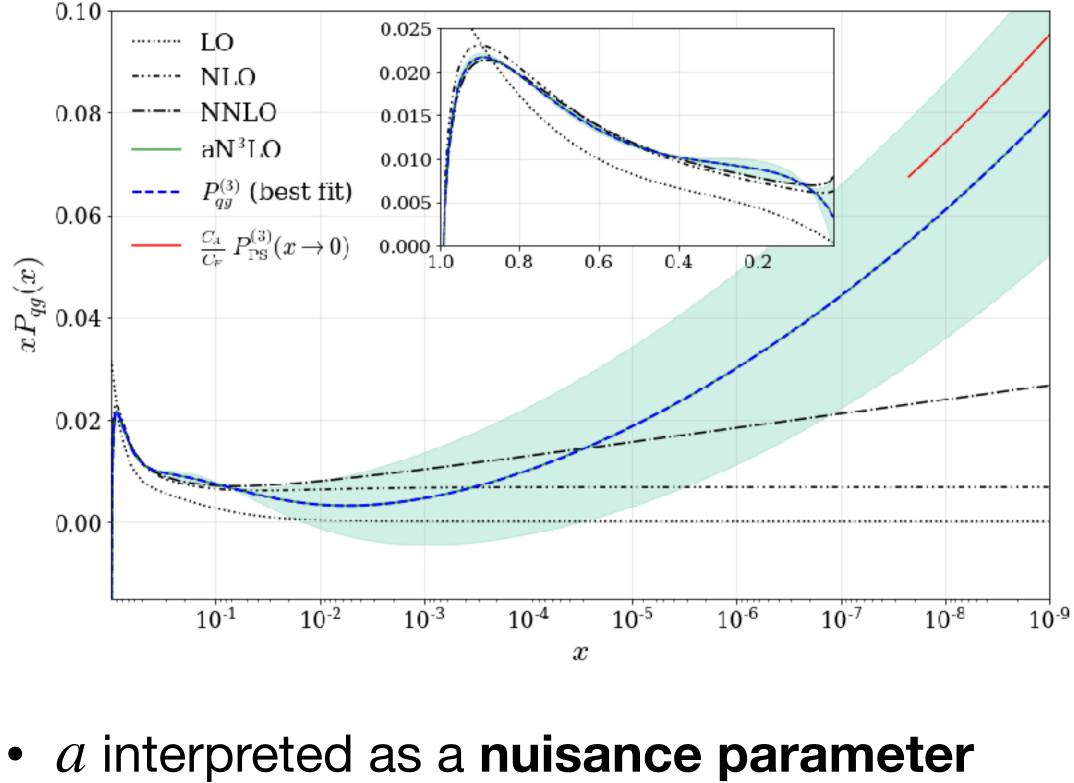


What do we know?

...and what don't we know?

- Zero-mass N³LO coefficient functions are known^[1].
- Some knowledge of leading terms in the $x \rightarrow 0$ and large regime^[2-11].
- Some numerical constraints (Low-integer Mellin moments)^[2-11].
- **Intuition** from lower orders/expectations from perturbation theory.
- Other parts, we know a very **limited amount** about $(A_{gg,H}^{(3)})$ and most *K*-factors) [8-10]

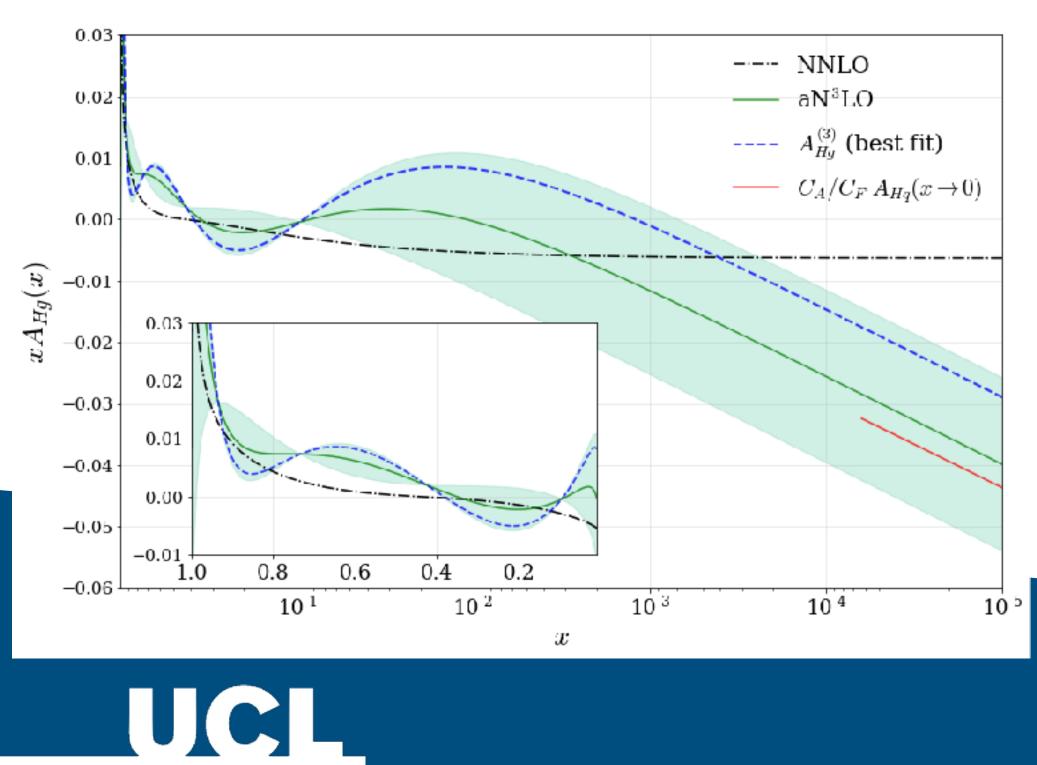


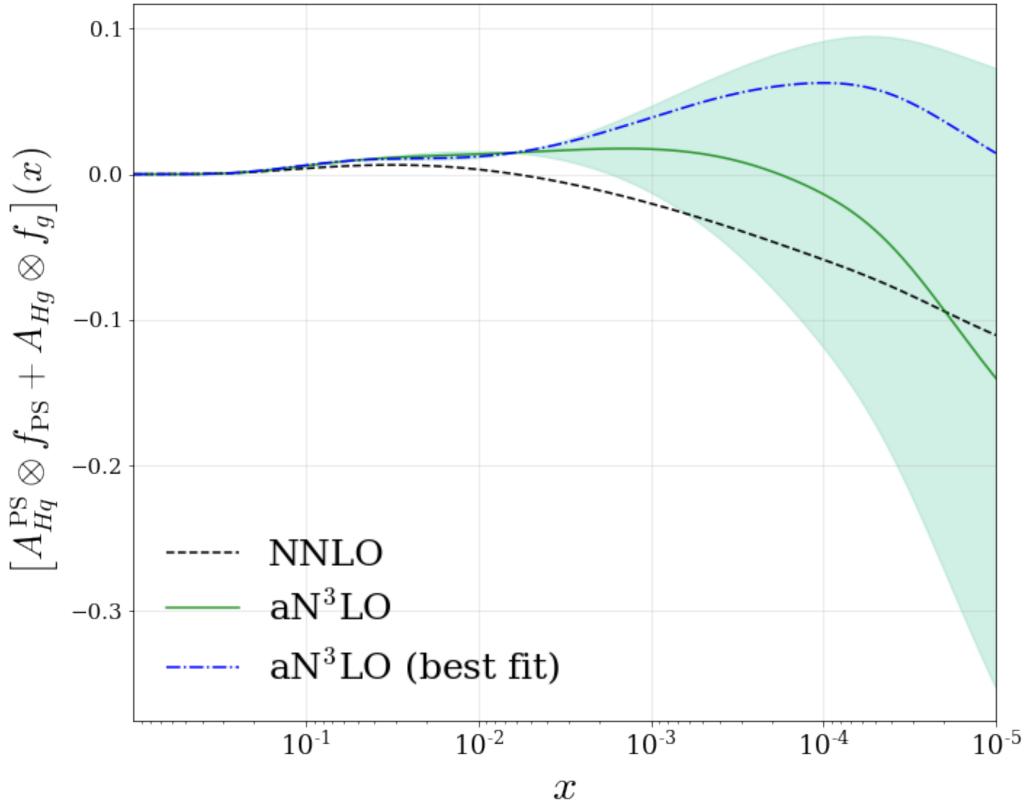

Splitting Functions up to N³LO ...approximately

- Consider we know N_m Mellin moments^[1-5].
- With N_m constraints, we employ:

- Choose a set of **relevant functions** f_i and solve for A_i .
- To allow control of this function, introduce a lacksquaredegree of freedom *a*. $f_{\rho}(x) \rightarrow f_{\rho}(x, a)$

contains any known information.


- allowed to vary in a PDF fit.
- In our treatment *a* is the **coefficient of the** most divergent unknown small-x term.



Transition Matrix Elements up to N³LO ...approximately

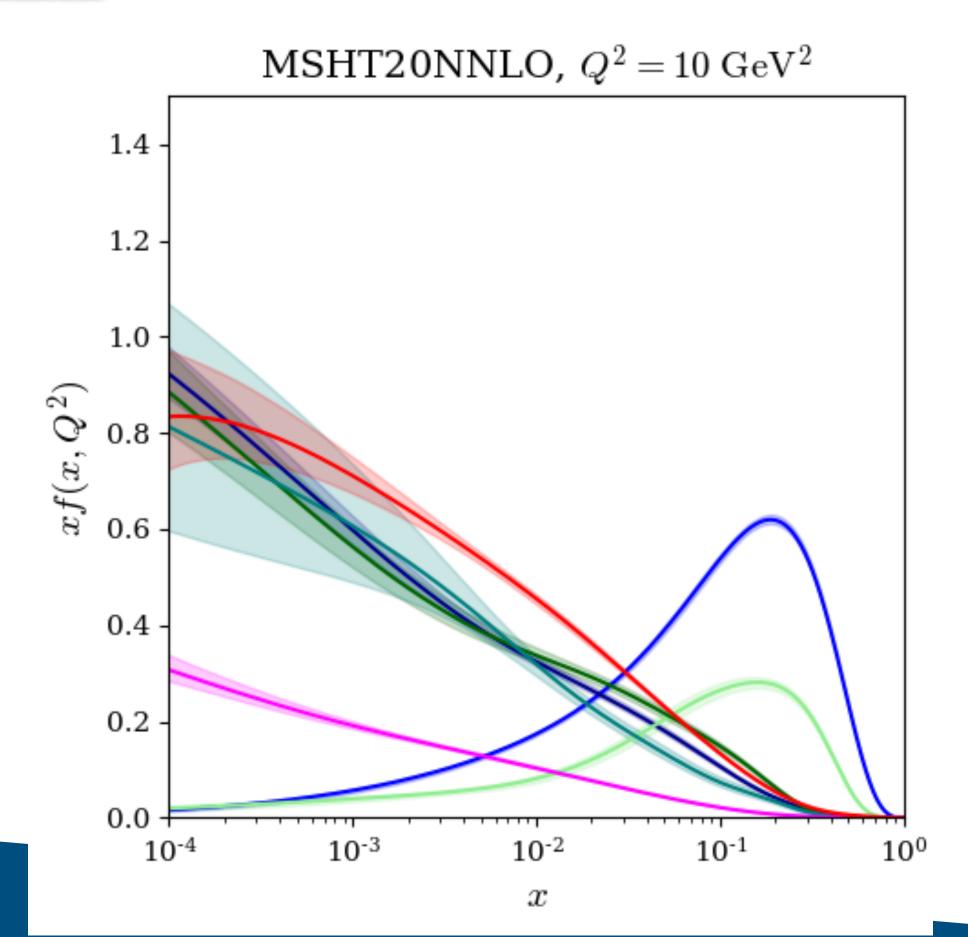
- Following the same procedure as for the splitting functions.
- A_{Hg} is the **dominant contribution** to the overall form of $(H + \overline{H})$ shown across.

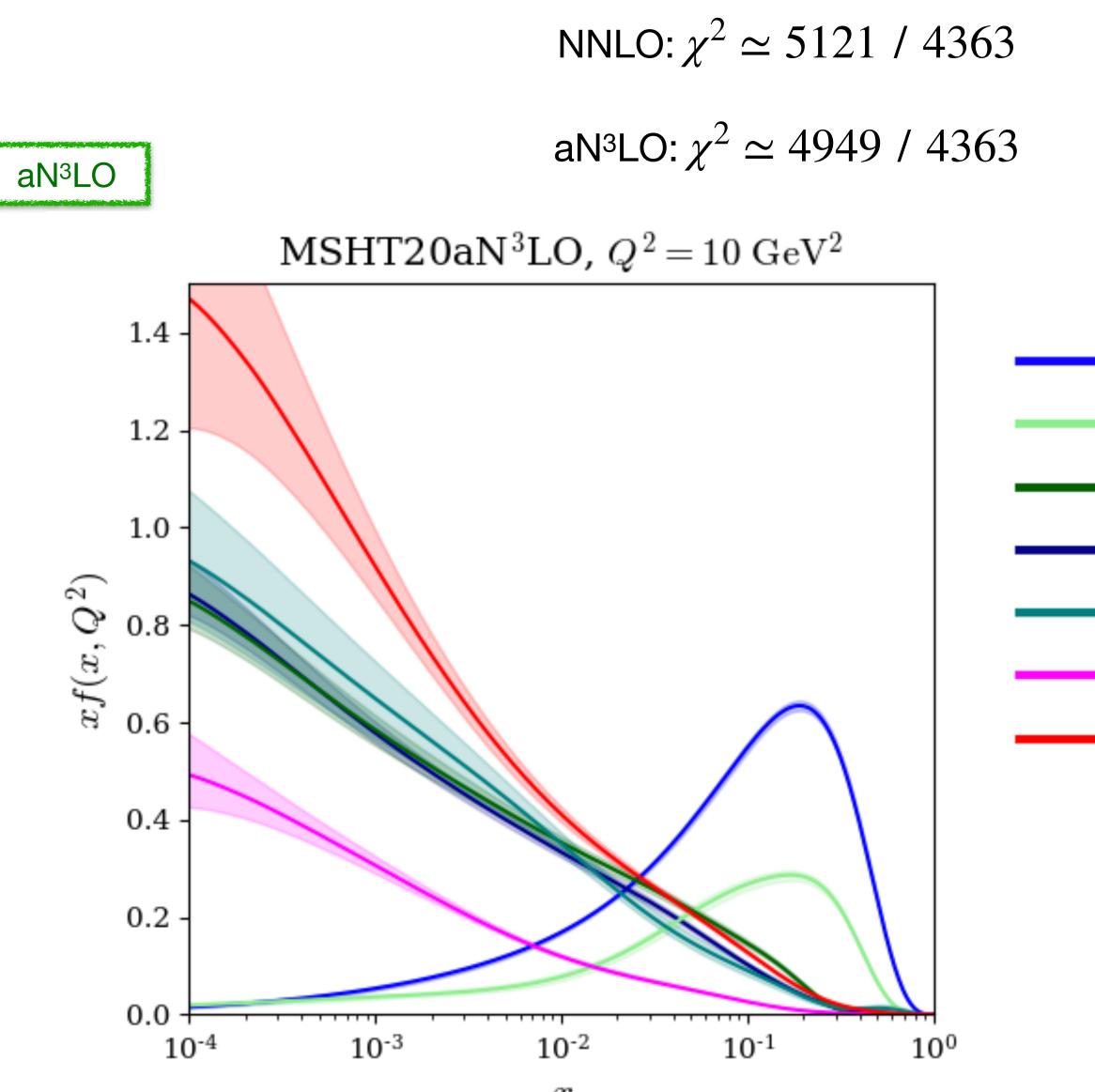
• A_{Hg} variation is **comparable** to previous results^[14].

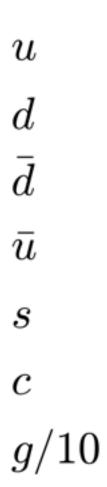
N³LO K-factors

- Parameterise the N³LO K-factor as a superposition of both NNLO and NLO K-factors.
- Allows the fit to decide on a shape (based on the shapes of preceding orders) and an overall magnitude.
- Center variational parameters \hat{a}_1, \hat{a}_2 about 0, so K_{NNLO} is the **central** value.

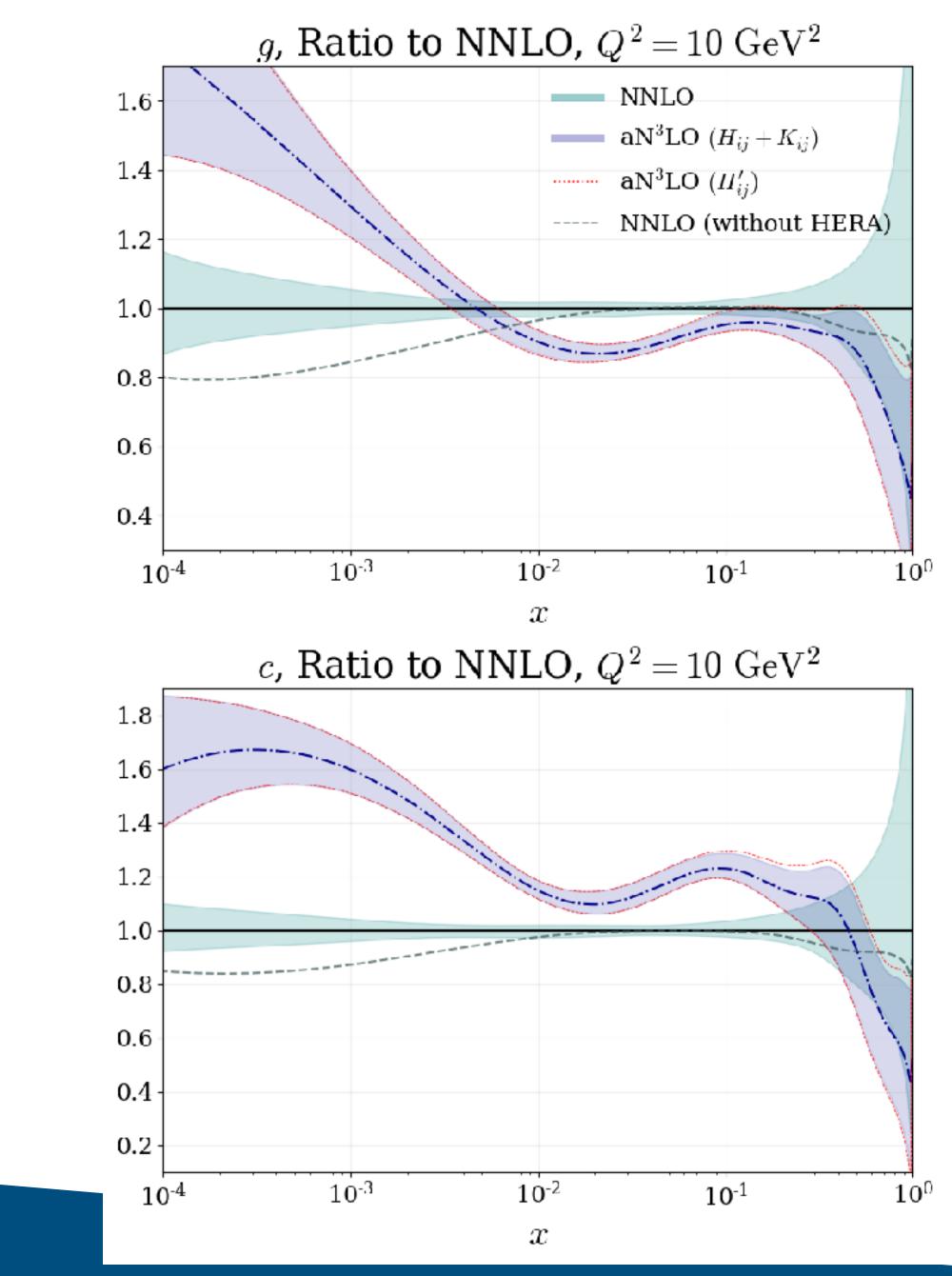
 $K(y) = 1 + \alpha_{\rm s} D(y) + \alpha_{\rm s}^2 E(y) + \alpha_{\rm s}^3 F(y) + \mathcal{O}(\alpha_{\rm s}^4)$


 $K^{\text{N}^{3}\text{LO/LO}} = K^{\text{NNLO/LO}} \left(1 + \alpha_{s}^{3} \hat{a}_{1} D + \alpha_{s}^{3} \hat{a}_{2} E \right)$

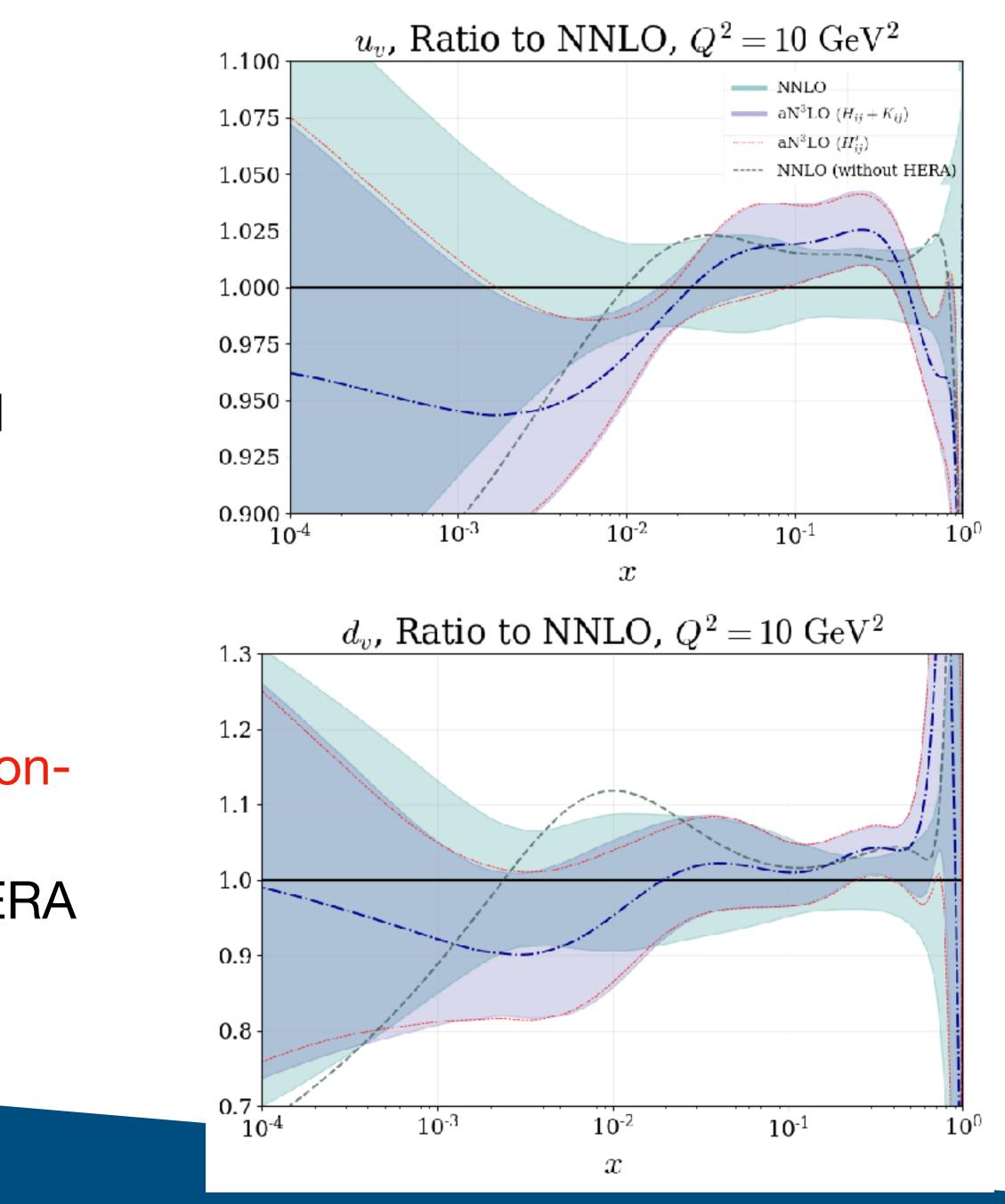

- **Correlated K-factors** for each of the 5 processes: DY, Top, Jets, $Z p_T \& VB$ Jets and Dimuon (also dijets).
- \hat{a}_1, \hat{a}_2 could be included as correlated with **PDF parameters** (incl. other N³LO theory parameters) or as **completely decorrelated** from the inclusive DIS process.
 - Ignores some small correlations through DGLAP.



NNLO

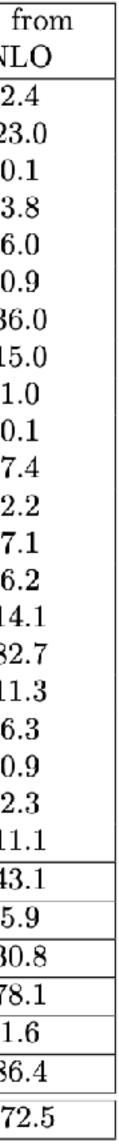

x

MSHT aN³LO PDFs


- Gluon is enhanced at small-x due to the large logarithms present at higher orders.
- Charm receives a sizeable contribution from $A_{H\varrho}^{(3)}$.
 - A_{Hg} at high-x and the gluon at small-x involved in convolution.
- At high- Q^2 there are less drastic effects, however charm remains more similar to CT18 NNLO PDF than MSHT20 NNLO PDF.

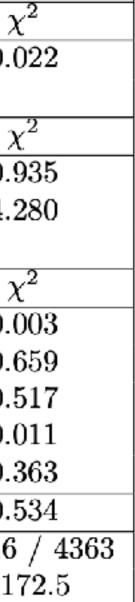
MSHT aN³LO PDFs

- Correlated and uncorrelated *K*-factors show consistent uncertainty predictions across all (x, Q^2) .
- Quarks are reduced at large and small-*x* to accommodate the gluon.
- aN³LO follows more closely the NNLO fit to non-HERA datasets at high-*x*, demonstrating a reduction in tension between the small-*x* HERA data and other datasets.

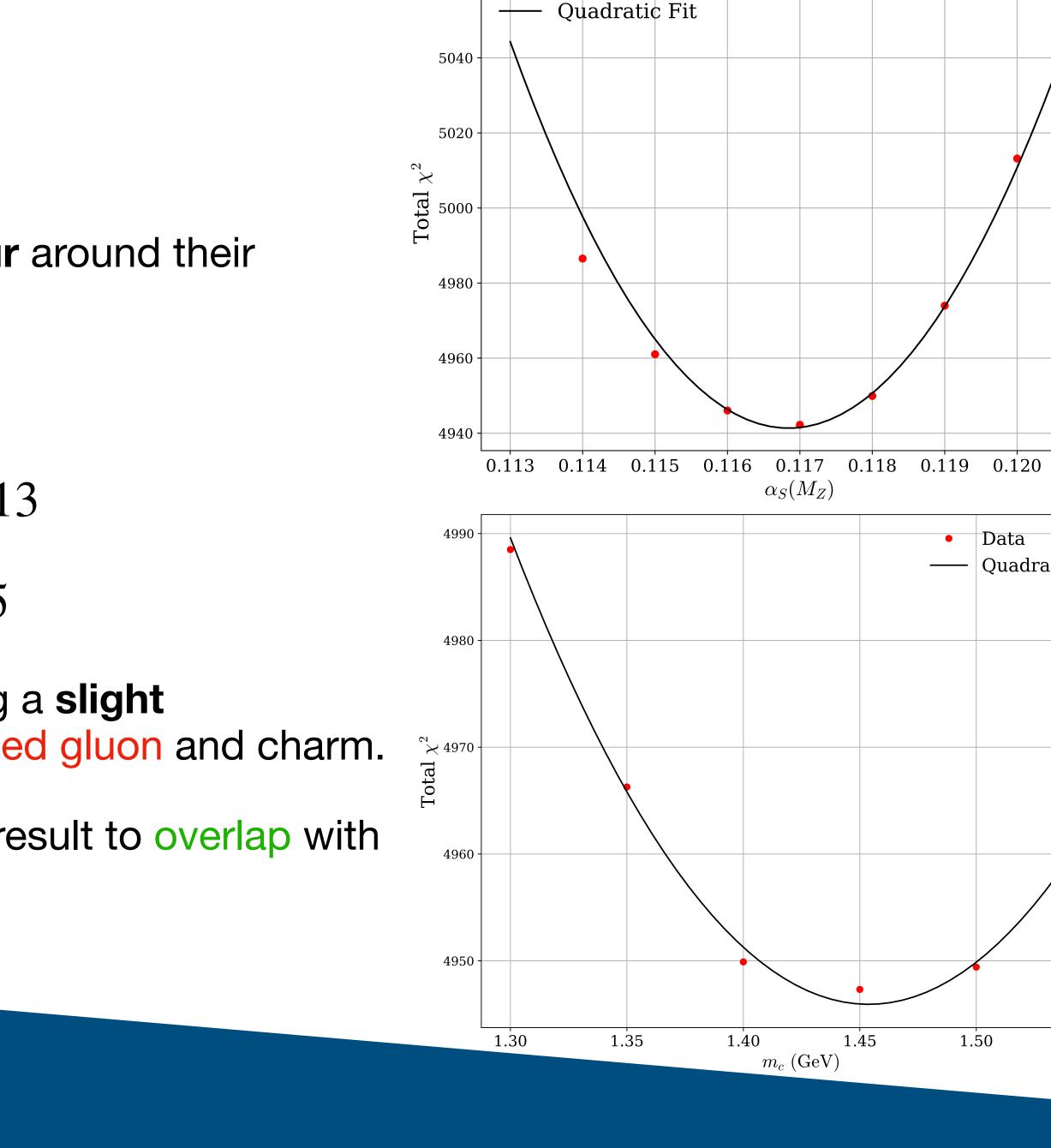


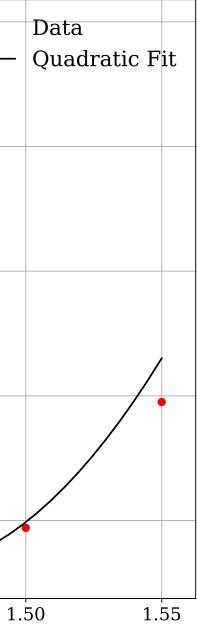
- We see a **reduction** in χ^2 from NNLO across all datasets ($\Delta \chi^2 = -172.5$ for 20 extra parameters).
- ATLAS 8 TeV $Z p_T$ ^[15] sees a huge reduction in χ^2_{NNLO} /npts ~ 1.82 to $\chi^2_{aN^3LO}$ /npts ~ 1.02.
- This is a **similar reduction** found at NNLO when HERA datasets were not included^[17].
- In the aN³LO fit, we also see a **reduction** in the HERA data χ^2 .

Dataset	N .	\sim^2	$\Delta\chi^2$ f
Dataset	$N_{ m pts}$	χ^2	$\begin{vmatrix} \Delta \chi \\ NNI \end{vmatrix}$
HERA $ep F_2^{charm}$	79	134.7	+2
NMC/BCDMS/SLAC/HERA F_L	57	45.5	-23
HERÁ e^+p CC	39	51.8	-0
HERA e^{-p} CC	42	66.3	-3
HERA e^+p NC 820 GeV	75	83.8	-6
HERA e^-p NC 460 GeV	209	247.4	-0
HERA e^+p NC 920 GeV	402	476.7	-36
HERA e^-p NC 575 GeV	259	248.0	-15
HERA e^-p NC 920 GeV	159	243.3	-1
ATLAS W^+ , W^- , Z	30	30.0	+0
CMS double diff. Drell-Yan	132	137.1	-7
LHCb 2015 W, Z	67	97.2	-2
ATLAS 7 TeV jets	140	214.5	-7
ATLAS 7 TeV high prec. W, Z	61	110.5	-6
CMS 7 TeV jets	158	189.8	+14
ATLAS 8 TeV $Z p_T$	104	105.8	-82
m CMS~8~TeV~jets	174	272.6	+11
ATLAS 8 TeV High-mass DY	48	63.4	+6
ATLAS 8 TeV $W + \text{jets}$	30	19.1	+0
ATLAS 8 TeV W	22	55.1	-2
CMS 2.76 TeV jet	81	113.9	+11
DY data Total	864	1044.8	-43
Top data Total	71	73.4	-5
Jets data Total	739	972.9	+30
p_T Jets data Total	144	137.1	-78
Dimuon data Total	170	124.6	-1
DIS data Total	2375	2585.2	-86
Total	4363	4948.6	-17


- The overall χ^2 follows the **general trend** one may expect from perturbation theory.
- Evidence that including aN³LO has reduced tensions between small and large-x.
- χ^2 reduction is **mostly due** to new theory, not just from K-factors included in fit.
- Average penalty for included 20 aN³LO parameters is ~ 0.53.

	LO	NLO	NNLO	aN ³ LO
$\chi^2/N_{ m pts}$	2.57	1.33	1.17	1.13

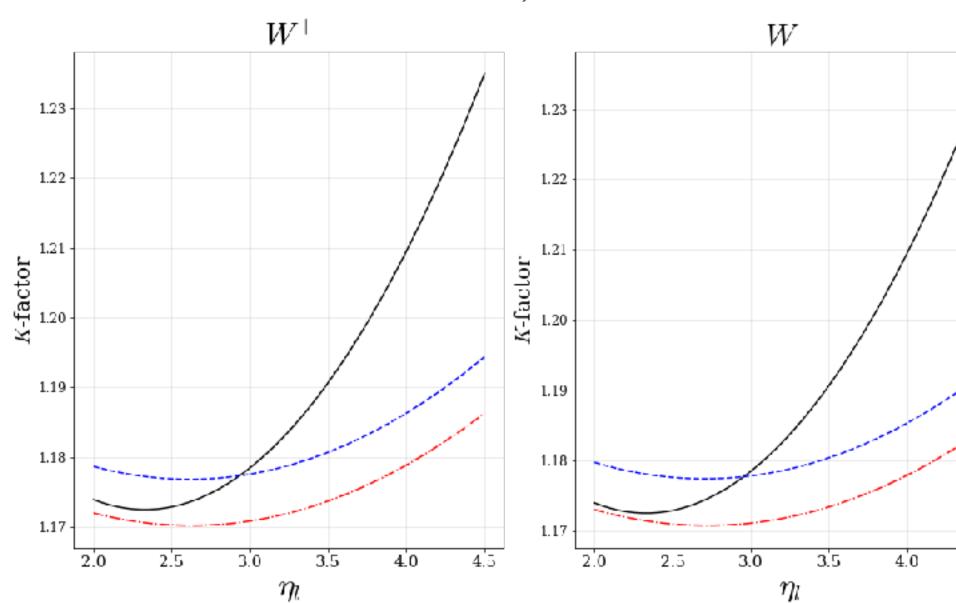

Low- Q^2 Coefficient	χ^2	Low- Q^2 Coefficient	χ^2
$c_q^{ m NLL}$	0.000	$c_g^{ m NLL}$	0.862
Transition Matrix Elements	χ^2	Transition Matrix Elements	χ^2
a_{Hg}	0.526	$a_{qq,H}^{NS}$	0.022
$a_{gg,H}$	1.091		
Splitting Functions	χ^2	Splitting Functions	χ^2
$ ho_{qq}^{NS}$	0.007	$ ho_{gq}$	0.935
$ ho_{qq}^{P_{qq}} ho_{qq}^{PS}$	0.255	$ ho_{gg}$	4.280
$ ho_{qg}$	0.000		
K-factors	χ^2	K-factors	χ^2
DY _{NLO}	0.061	DY _{NNLO}	0.003
$\mathrm{Top}_{\mathrm{NLO}}$	0.105	Top _{NNLO}	0.659
$\rm Jet_{NLO}$	0.063	$\rm Jet_{NNLO}$	0.517
$p_T \mathrm{Jets}_{\mathrm{NLO}}$	0.438	$p_T m Jets_{NNLO}$	0.011
Dimuon _{NLO}	0.481	Dimuon _{NNLO}	0.363
N ³ LO Penalty Total	10.7 / 20	Average Penalty	0.534
		Total	4948.6 / 43
		$\Delta \chi^2$ from NNLO	-172.5



- Both $\alpha_S(M_Z^2)$ and m_c show a **quadratic behaviour** around their respective minima.
- Best fit of $\alpha_{\rm S}(M_{\rm Z}^2)$ is settling $\simeq 0.1167$.
 - MSHT20 NNLO: $\alpha_S(M_Z^2) = 0.1174 \pm 0.0013$
 - MSHT20 NLO: $\alpha_S(M_Z^2) = 0.1203 \pm 0.0015$
- Both these results suggest that the fit is preferring a **slight** ulletsuppression of the PDFs, particularly the enhanced gluon and charm.
- With a **future full analysis** we expect the aN³LO result to overlap with the NNLO world average within uncertainties.

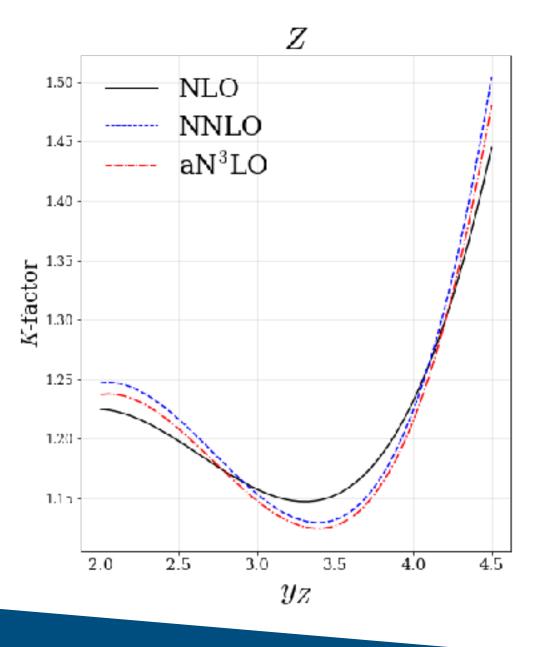
Data

N³LO Drell-Yan Processes


(K-factors up to $N^{3}LO$)

• *K*-factors transform the hard cross section between orders.

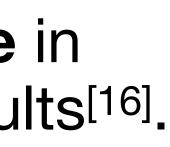
 $K(y) = 1 + \alpha_s D(y) + \alpha_s^2 E(y) + \alpha_s^3 F(y) + \mathcal{O}(\alpha_s^4)$

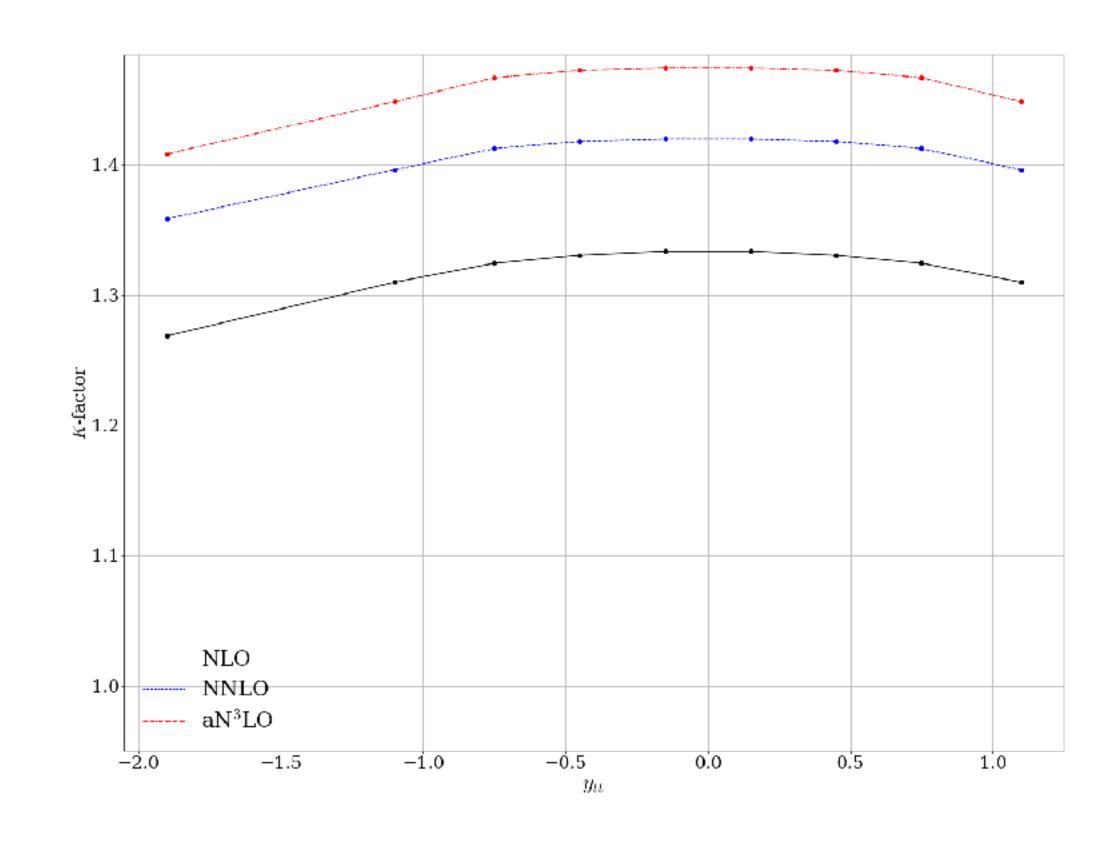

 $K^{\text{aN}^3\text{LO/LO}} = K^{\text{NNLO/LO}} \left(1 + \alpha_s^3 \hat{a}_1 D + \alpha_s^3 \hat{a}_2 E\right)$

- Allowed to vary about the NNLO central value.
- Predict a ~1% decrease in the DY K-factors from NNLO.
- In agreement with recent results found using NNLO PDFs with aN³LO cross section^[15].

LHCb 2015 W, Z dataset results

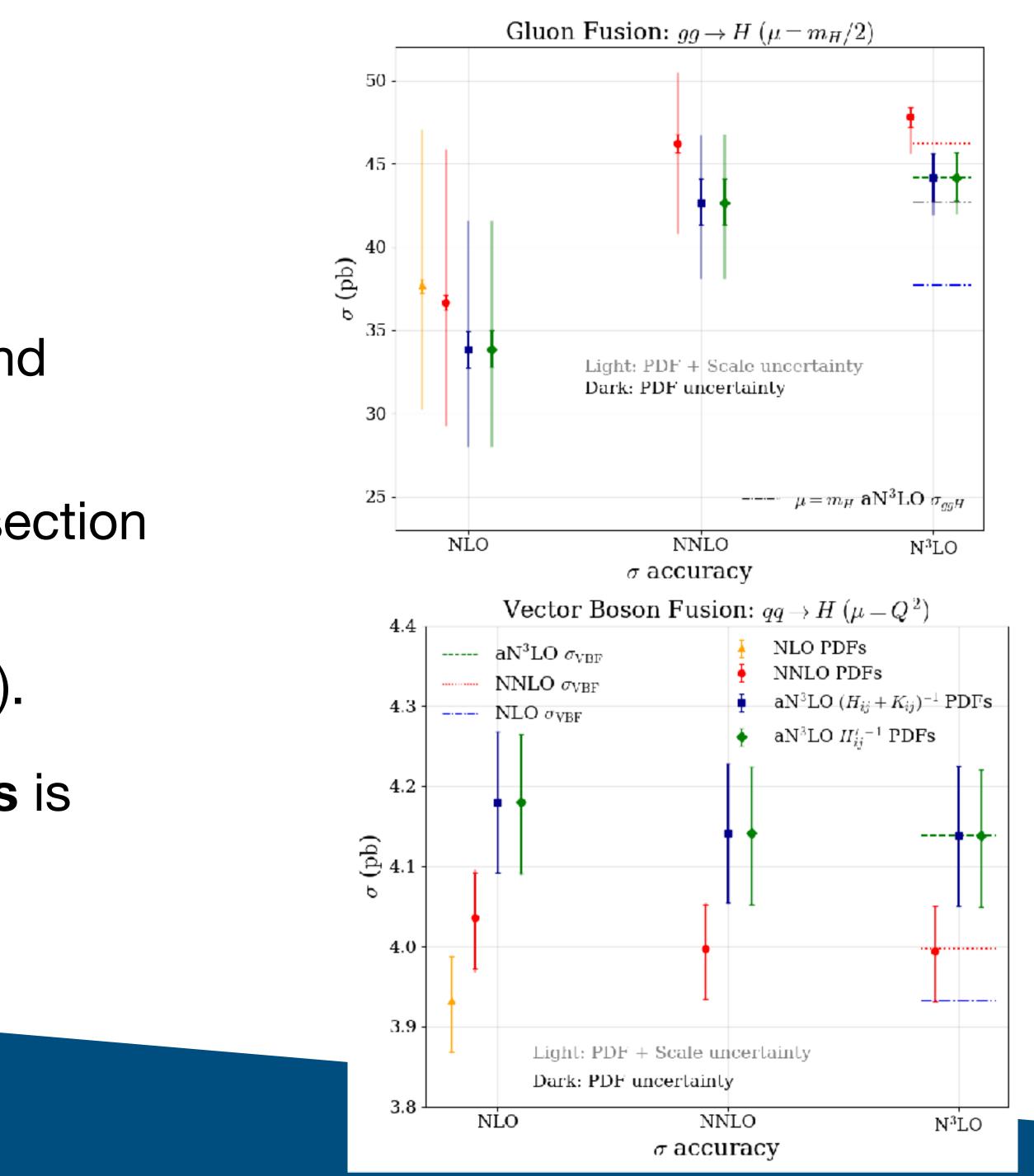
	NNLO	aN ³ LO
$\chi^2_{ m DY}/N_{ m pts}$	1.26	1.21





N³LO Top Processes (K-factors up to $N^{3}LO$)

- Top *K*-factors see an **overall increase** in magnitude, consistent with recent results^[16].
- χ^2 results show a **marginally better** fit overall.
- K-factors have successfully accounted for the **theory changes** in the F_2 structure function theory.
- K-factor for CMS 8 TeV single diff. $t\bar{t}$ shown here.



	NNLO	$aN^{3}LO$
$\chi^2_{ m top}/N_{ m pts}$	1.12	1.03

Higgs Predictions For gluon fusion and Vector Boson Fusion (VBF)

- Good agreement between NNLO and aN³LO for gluon fusion (top).
- Cancellation between N³LO cross section and PDFs not guaranteed.
- Less cancellation for VBF (bottom).
- However variation between orders is smaller for VBF σ .

Dijet data at the LHC

- Fit quality to dijet data at NNLO shows a good **improvement** from jet data.
 - Particularly better fit to $Z p_T$.
 - Slightly worse fit to top data.
- Fit quality is also better when fitting to dijet data at aN³LO.
 - Fit quality to all **other data** (incl. $Z p_T$ and top datasets) becomes marginally better $\Delta \chi^2_{\rm other} \sim -20.$
- Full analysis to follow in the **near future**.

 CMS 8 TeV dijet data is fit with leading colour K-factors - full colour results will follow soon.

Jets data

	N .	$\chi^2/$	$N_{ m pts}$
	$N_{ m pts}$	NNLO	aN ³ LO
ATLAS 7 TeV jets	140	1.58	1.53
CMS 7 TeV jets	158	1.11	1.20
CMS 8 TeV jets	174	1.50	1.57
Total	472	1.39	1.43

Dijets data

	N	$\chi^2/$	$N_{ m pts}$		
	$N_{ m pts}$	NNLO	aN ³ LO		
ATLAS 7 TeV dijets	90	1.05	1.14		
CMS 7 TeV dijets	54	1.43	1.40		
CMS 8 TeV dijets	122	1.04	0.84		
Total	266	1.12	1.06		

Summary

- **Approximate N³LO PDFs** are available and we encourage their use.
 - Available as LHAPDF grids at www.hep.ucl.ac.uk/msht/ (see publication for usage instructions).
 - Full information is available in the article JM et. al., <u>2207.04739</u>
- Provide an intuitive and controllable way to include theoretical uncertainties into PDFs.
- Results show good agreement with current N³LO predictions. \bullet
- Stay tuned for further developments regarding dijets (and SeaQuest) in an aN³LO global fit.

References

[1] - J. Vermaseren, A. Vogt, and S. Moch, Nuclear Physics B, 724, 3–182 (2005) [2] - S. Moch, B. Ruijl, T. Ueda, J. A. M. Vermaseren, and A. Vogt, Journal of High Energy, 1653, Physics, 2017, (2017) [3] - A. Vogt et al., PoS LL2018, 050 (2018), 1808.08981

[4] - S. Moch, B. Ruijl, T. Ueda, J. A. M. Vermaseren, and A. Vogt, (2021), 2111.15561

[5] - S. Moch, B. Ruijl, T. Ueda, J. A. M. Vermaseren, and A. Vogt, Journal of High Energy, 1664, Physics, 2017, (2017)

[6] - I. Bierenbaum, J. Blumlein, and S. Klein, Nuclear Physics B, 820, 417 (2009)

[7] - M. Bonvini and S. Marzani, Journal of High Energy Physics, 2018, (2018)

[8] - J. Ablinger et al., Nucl. Phys. B, 886, 733 (2014), 1406.4654.

[9] - J. Ablinger et al., Nuclear Physics B, 890, 48–151 (2015)

[10] - J. Ablinger et al., Nuclear Physics B, 882, 263–288 (2014)

[11] - H. Kawamura, N. A. Lo Presti, S. Moch, and A. Vogt, Nucl. Phys. B, 864, 399 (2012),1689

[12] - R. D. Ball and R. L. Pearson, The European Physical Journal C, 81, (2021)

[13] - J. Blumlein et al., PoS, QCDEV2017, 031 (2017), 1711.07957

[14] - H. Kawamura, N. Lo Presti, S. Moch, and A. Vogt, Nuclear Physics B, 864, 399–468, 1682, (2012). [15] - X. Chen et al., (2021), 2107.09085.

[16] - N. Kidonakis, Three-loop soft anomalous dimensions in QCD, in 15th International Symposium on Radiative Corrections: Applications of Quantum Field Theory to Phenomenology AND LoopFest XIX: Workshop on Radiative Corrections for the LHC and Future Colliders, 2021, 2109.14102

[17] - S. Bailey et. al., MSHT20 (2020).

A selection of other references not directly mentioned but used for these results: [] - G. Altarelli and G. Parisi, Nucl. Phys. B, 126, 298 (1977)

[] - E. G. Floratos, D. A. Ross, and C. T. Sachrajda, Nucl. Phys. B, 152, 493 (1979)

[] - A. Gonzalez-Arroyo and C. Lopez, Nucl. Phys. B, 166, 429 (1980)

[] - W. Furmanski and R. Petronzio, Phys. Lett. B, 97, 437 (1980)

[] - E. G. Floratos, C. Kounnas, and R. Lacaze, Nucl. Phys. B, 192, 417 (1981)

[] - S. Moch, J. Vermaseren, and A. Vogt, Nuclear Physics B, 688, 101–134 (2004)

[] - A. Vogt, S. Moch, and J. Vermaseren, Nuclear Physics B, 691, 129–181 (2004)

[] - M. Buza, Y. Matiounine, J. Smith, and W. L. van Neerven, The European Physical, 1668, Journal C, 1, 301–320 (1998).

[] - M. Buza, Y. Matiounine, J. Smith, and W. van Neerven, Nuclear Physics B, 485, 1670, 420–456 (1997).

[] - S. Catani, M. Ciafaloni, and F. Hautmann, Nucl. Phys. B, 366, 135 (1991).

[] - . Laenen and S.-O. Moch, Phys. Rev. D, 59, 034027 (1999), hep-ph/9809550

For an exhaustive list please refer to J. McGowan et. al., (2022) 2207.04739

Full χ^2 Breakdown

$\begin{array}{c} \text{DOW} Normal of the state of the $					Dataset	N _{pts}	χ^2	$\Delta \chi^2$ from NNLO
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$					$D \emptyset \Pi W \rightarrow \nu e asym.$ [66]	12	29.0	-5.0
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	ceakdown				DØ II $p\bar{p}$ incl. jets [83]	110	113.6	-6.7
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Ganaovii					30	29.9	-0.0
Lotacet $N_{\rm pb}$ λ $N_{\rm N100}$ NUC $N_{\rm N100}$ NUC 24 7.5 $+0.1$ BCDMS $\mu p F_2$ [114]163180.7 $+0.5$ $p_T > 25,30$ GeV [69] $p_T > 25,30$ GeV [60] p_T	Detect	21	2	A + 2 (mana		11	7.0	-0.8
BCDMS μp F, [114]163180.7+0.5BCDMS μp F, [114]151144.0-2.0NMC μp F, [113]123119.2-4.9NMC μp F, [113]123110.5-6.2SLAC $er p$ F, [116, [117]3732.0-0.0SLAC $er f_{1}$ [116, [117]3821.6-1.4E665 μp F, [118]5364.3+4.7E665 μp F, [118]5364.3+4.7NuTeV νN r_{1} [12]5338.7+0.4NuTeV νN r_{1} [13]4234.3+3.6INUC $\mu n / \mu p$ [120]148128.4-2.4UHCb Susce $p D Y$ [60]184208.8-16.2B266 / Nusce $p D Y$ [60]184208.8-16.2CRS $er p$ F, [114]1577-2.6HERA $er p$ Stam<[121]	Dataset	Npts	χ-			24	7.5	+0.1
BCDMS μa F, [114]151144.0-2.0LHCb $Z \rightarrow e^+e^-$ 920.6-2.1NMC μp F, [113]123119.2-4.9-4.9-4.91012.9+0.4NMC μp F, [113]123119.2-4.9-4.9-4.91012.9+0.4SLAC ep F, [116]117]3821.6-1.4-1.4CMS $Z \rightarrow e^+e^-$ [72]3517.3-0.6SLAC ep F, [118]5366.1+1.4-2.4Tevatron, ATLAS, CMS1714.1-0.5E665 μp F, [118]5367.1+2.4 σ_t [$\overline{\mathcal{O}}_2$ -[$\overline{\mathcal{O}}_2$]1318.6-0.3NuTeV vN F, [119]4234.3+3.6LHCb 2015 W, Z [$\overline{\mathcal{O}}_2$, [$\overline{\mathcal{S}}_2$, [$\overline{\mathcal{S}}_2$]6797.1-2.3NMC $\mu n/\mu p$ [120]148128.4-2.4LHCb 2015 W, Z [$\overline{\mathcal{O}}_2$, [$\overline{\mathcal{S}}_2$, [$\overline{\mathcal{S}}_2$]6797.1-2.3NMC $\mu n/\mu p$ [121]79135.8+3.6LHCb 2015 W, Z [$\overline{\mathcal{S}}_2$, [$\overline{\mathcal{S}}_2$]1012.2+3.6NMC $\mu N \rightarrow \mu \mu X$ [113]8669.0+1.3CMS 7 TeV [ets [84]140214.0-7.6CHORUS $vN x_f_3$ [122]2819.5+1.0CMS 7 TeV [ets [81]104106.3-82.2CHORUS $vN x_f_3$ [123]289.5+1.0CMS 7 TeV [ets [82]104106.3-82.2CHORUS $vN x_f_3$ [125]2819.5+1.0CMS 8 TeV sing, diff. ff110.4-6.2HERA $e^+ p$ NC 520 GeV [126]29	BCDMS $uv F_2$ [114]	163	180.7		$p_T > 25,30 \text{ GeV}$ [69]			
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$,,			1	LHCb $Z \rightarrow e^+e^-$ [70]	9	20.6	-2.1
NMC $\mu d F_{2}$ [113]123106.5-6.2CMS $Z \rightarrow e^{+}e^{-}$ [72]3517.3-0.6SLAC $ed F_{2}$ [116,112]3732.0-0.0<		123		1	LHCb W asym. $p_T > 20$ GeV [71]	10	12.9	+0.4
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	NMC $\mu d F_2$ [115]	123	106.5	-6.2		35	17.3	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		37	32.0	-0.0				1
$\begin{array}{c c c c c c c c c c c c c c c c c c c $								1
Luco pr T_2 [12]S3S0S7.1+1.4NuTeV $vN x_5^3$ [119]4234.3+3.6NMC $\mu n/\mu p$ [120]148128.4-2.4E866 / NuSea pn DY [61]157.7-2.6HERA $ep E^{harm}$ [121]79135.8+3.6NMC/BCDMS/SLAC/HERA5745.5-23.0 F_L [114,113,117,122,12279135.8CCRE $vN \rightarrow \mu\mu X$ [113]8669.0+1.3NuTeV $vN \rightarrow \mu\mu X$ [113]8455.3-3.1CHORUS $vN F_2$ [122]4232.9+2.7CHORUS $vN F_2$ [122]4232.9CHORUS $vN F_2$ [122]4266.3HERA $e^+ p$ CC [126]3951.6HERA $e^- p$ CC [126]4266.3HERA $e^- p$ NC 400 GeV [126]20944.1-5.8HERA $e^- p$ NC 575 GeV [126]259247.9-15.1HERA $e^- p$ NC 902 GeV [126]259247.9-15.1HERA $e^- p$ NC 902 GeV [126]259247.9-15.1CDF II $p\bar{p}$ ind, jets [82]76GB1 II pri ind, jets [82]76GB2 II pri ind, jets [82]76 <td>·</td> <td></td> <td></td> <td>1</td> <td></td> <td></td> <td>11.1</td> <td>0.0</td>	·			1			11.1	0.0
NuTeV $vNxT_5$ [119]4234.3+3.6NMC $un/\mu p$ [120]148128.4-2.4E866 / NuSea pp DY [61]184208.8-16.2E866 / NuSea pp DY [61]157.7-2.6HERA $ep f_{2}^{barm}$ [121]79135.8+3.6NMC/BCDM5/SLAC/HERA5745.5-23.0 F_L [114,115,117,122-124]74.55-23.0CCFR $vN \rightarrow \mu\mu X$ [113]8669.0+1.3NuTeV $vN \rightarrow \mu\mu X$ [113]8455.3-3.1CHORUS $vN xF_B$ [125]4232.9+2.7CHORUS $vN xF_B$ [125]2819.5+1.0HERA e^+p CC [126]4266.3-3.8HERA e^+p NC 200 GeV [126]7584.0-5.8HERA e^+p NC 200 GeV [126]209247.1-1.2HERA e^+p NC 200 GeV [126]159243.4-1.0CDF II $p\bar{p}$ ind, jets [83]7668.7+8.3DØ II Z rap. [63]2839.6+2.5CDF II Z rap. [63]2839.6+2.5DØ II Z rap. [63]2839.6+2.5DØ II Z rap. [63]2839.6+2.5DØ II Z rap. [64]1016.7-0.6CDF II Z rap. [64]1016.7-0.6DØ II Z rap. [64]1016.7-0.6DØ II Z rap. [64]1016.7-0.6DØ II Z rap. [64]1016.7-0.6DØ II Z rap. [64]1016.7-0.6CDF II Z rap. [64]28-0.6						132	136.8	_77
$\begin{array}{c c c c c c c c c c c c c c c c c c c $				1				
E866 / NuSea pp DY [61]184208.8-16.2E866 / NuSea pd/pp DY [61]157.7-2.6HERA $ep p_2^{barm}$ [12]79135.8+3.6NMC/BCDMS/SLAC/HERA5745.5-23.0 F_1 [114,113,117,122-124]-0.6CMS 7 TeV $y + c$ [88]10CCFR $vN \rightarrow \mu\muX$ [113]8669.0+1.3NuTeV $vN \rightarrow \mu\muX$ [113]8669.0+1.3CCFR $vN \rightarrow \mu\muX$ [113]8669.0+1.3CHORUS $vN \neq_p$ [125]4232.9+2.7CHORUS $vN x_{F_2}$ [122]2819.5+1.0HERA e^+p CC [126]3951.6-0.4HERA e^-p NC 460 GeV [126]7584.0HERA e^-p NC 20 GeV [126]7584.0HERA e^-p NC 525 GeV [126]209247.1HERA e^-p NC 520 GeV [126]209247.1HERA e^-p NC 200 GeV [126]209247.1HERA e^-p NC 200 GeV [126]209247.1HERA e^-p NC 525 GeV [126]259247.9HERA e^-p NC 520 GeV [126]259247.9HERA e^-p NC 920 GeV [126]159243.4HERA e^-p NC 525 GeV [126]259247.9HERA e^-p NC 526 GeV [126]2816.8HOP II $p\bar{p}$ ind. jets [82]7668.7HERA e^-p NC 920 GeV [126]2816.8HOP II z rap. [62]2816.8HOP II z rap. [62]2816.8HOP II z rap. [62]2816.8HOP II z rap. [62]28	Nullev $vN xF_3$ [119]			1				
E866 / NuSea $p\dot{d}/pp$ DY [6]157.7-2.6HERA ep p_{cham}^{cham} [12]79135.8+3.6NMC/BCDMS/SLAC/HERA5745.5-23.0 F_L [114,113,117,122-12379135.8+3.6CCFR $vN \rightarrow \mu\muX$ [113]8669.0+1.3NuTeV $vN \rightarrow \mu\muX$ [113]8455.3-3.1CHORUS $vN F_2$ [125]4232.9+2.7CHORUS $vN F_3$ [125]2819.5+1.0CHORUS $vN x_{f_3}$ [126]2819.5HERA e^+p CC [126]3951.6HERA e^+p CC [126]29247.1HERA e^+p NC 820 GeV [126]209247.1HERA e^-p NC 460 GeV [126]209247.1HERA e^-p NC 575 GeV [126]209247.1HERA e^-p NC 920 GeV [126]209247.9HERA e^-p NC 920 GeV [126]29247.9HERA e^-p NC 920 GeV [126]2816.8HO II Z rap. [63]2839.6HERA e^-p NC 920 GeV [126]28HERA e^-p NC 920								
HERA ep p_{2}^{charm} [12]79135.8+3.6HIM MODELNMC/BCDMS/SLAC/HERA5745.5-23.0CMS 7 TeV ψ + c [88]1011.0+3.6 F_L [114,[115,[117,[122-I22]]8669.0+1.3CMS 7 TeV ψ + c [88]158189.9+14.1NuTeV $vN \rightarrow \mu\mu\chi$ [113]8669.0+1.3DØ W asym. [7]148.8-3.3CHORUS $vN \rightarrow p_{L}\chi$ [125]4232.9+2.7ATLAS 8 TeV Z p_T [87]104106.3-82.2CHORUS $vN x_{T_3}$ [125]2819.5+1.0CMS 8 TeV Z p_T [87]104106.3-82.2CHORUS $vN x_{T_3}$ [125]2819.5+1.0CMS 8 TeV Z p_T [87]104106.3-82.2CHORUS $vN x_{T_3}$ [125]2819.5+1.0CMS 8 TeV Z p_T [87]104106.3-82.2CHORUS $vN x_{T_3}$ [126]29247.1-1.2CMS 8 TeV sing. diff. $t\bar{t}$ [110]2525.0-0.7HERA e^+p NC 820 GeV [126]209247.1-1.2ATLAS 8 TeV sing. diff. $t\bar{t}$ 52.2-1.2HERA e^-p NC 920 GeV [126]159247.9-15.1ATLAS 8 TeV sing. diff. $t\bar{t}$ 11.21523.8+1.3CDF II $p\bar{p}$ incl. jets [82]7668.7+8.3ATLAS 8 TeV double diff. $t\bar{t}$ [112]1523.8+1.3DØ II Z rap. [63]2839.6+2.5CMS 8 TeV sing. diff. $t\bar{t}$ [91]98.3-4.9DØ II Z rap. [64]2016.7-0.6 <td></td> <td></td> <td></td> <td>1</td> <td></td> <td></td> <td></td> <td></td>				1				
NMC/BCDMS/SLAC/HERA 57 45.5 -23.0 ATLAS 7 TeV high prec. W, Z [59] 10 12.2 $+3.0$ F_L [114,[115,117,122-124] CCFR $vN \rightarrow \mu\mu X$ [113] 86 69.0 $+1.3$ ATLAS 7 TeV high prec. W, Z [59] 61 110.4 -6.2 CCFR $vN \rightarrow \mu\mu X$ [113] 84 55.3 -3.1 DØ W asym. [77] 14 8.8 -3.3 CHORUS $vN vF_2$ [125] 42 32.9 $+2.7$ ATLAS 8 TeV $Z p_T$ [87] 104 106.3 -82.2 CHORUS $vN vF_2$ [126] 28 19.5 $+1.0$ CMS 8 TeV jets [83] 174 271.9 $+10.6$ HERA e^+p NC 820 GeV [126] 42 66.3 -3.8 ATLAS 8 TeV sing. diff. $t\overline{t}$ [110] 25 25.0 -0.7 HERA e^-p NC 820 GeV [126] 209 247.1 -1.2 $dilep.$ [111] $TLAS 8 TeV sing. diff. t\overline{t}$ 5 2.2 -1.2 HERA e^-p NC 920 GeV [126] 209 247.9 -15.1 $TLAS 8 TeV High-mass DY [78] 48 63.8 +6.6 HERA e^-p NC 920 GeV [126] 259 243.4 -1.0 CMS 8 TeV doub$								
F_L [114,113,117,1122-124] CCFR $vN \to \mu\mu X$ [113]8669.0+1.3AILAS / TeV high prec. W, Z [59]61110.4-6.2 $CCFR vN \to \mu\mu X$ [113]8455.3-3.1 $CMS 7 TeV$ jets [81]158189.9+14.1 $NuTeV vN \to \mu\mu X$ [113]8455.3-3.1 $DØ$ W asym. [77]148.8-3.3 $CHORUS vN F_2$ [125]4232.9+2.7 $ATLAS 8 TeV Z p_T$ [87]104106.3-82.2 $CHORUS vN x_5$ [125]2819.5+1.0 $CMS 8 TeV jets$ [83]174271.9+10.6 $HERA e^+ p CC$ [126]3951.6-0.4 $ATLAS 8 TeV sing. diff. tf$ [110]2525.0-0.7 $HERA e^+ p NC$ 820 GeV [126]209247.1-1.2 $ATLAS 8 TeV sing. diff. tf$ 52.2-1.2 $HERA e^- p NC 460 GeV [126]209247.1-1.2ATLAS 8 TeV High-mass DY [78]4863.8+6.6HERA e^- p NC 920 GeV [126]159243.4-1.0CMS 8 TeV double diff. tf112]1523.8+1.3CDF II p\bar{p} incl. jets [82]7668.7+8.3ATLAS 8 TeV W [79]2254.8-2.6DØ II Z rap. [62]2816.8+0.5CMS 8 TeV sing. diff. tf[112]1523.8+1.3CDF II IZ rap. [63]2839.6+2.5CMS 8 TeV sing. diff. tf[12]98.3-4.9DOI II W \to w asym[64]16.7-0.6-0.6-0.6-0.6-0.6-0.6$	• ∠ •							
CCFR $vN \rightarrow \mu\mu X$ [113]8669.0+1.3CMS 7 feV jets [81]158189.9+14.1NuTeV $vN \rightarrow \mu\mu X$ [113]8455.3-3.1DØ W asym. [77]148.8-3.3CHORUS $vN x_{F_3}$ [125]4232.9+2.7ATLAS 8 TeV Z p_T [87]104106.3-82.2CHORUS $vN x_{F_3}$ [126]2819.5+1.0CMS 8 TeV jets [83]174271.9+10.6HERA e^+p CC [126]3951.6-0.4ATLAS 8 TeV sing. diff. tf110]2525.0-0.7HERA e^+p NC 820 GeV [126]7584.0-5.8ATLAS 8 TeV sing. diff. tf52.2-1.2HERA e^-p NC 200 GeV [126]209247.1-1.2dilep. [111]ATLAS 8 TeV High-mass DY [78]4863.8+6.6HERA e^-p NC 920 GeV [126]159243.4-1.0CMS 8 TeV double diff. tf[112]1523.8+1.3CDF II $p\bar{p}$ incl. jets [82]7668.7+8.3ATLAS 8 TeV W + jets [89]3019.2+1.1CMS 8 TeV double diff. tf[112]1523.8+1.3CDF II z rap. [63]2839.6+2.5CMS 8 TeV sing. diff. tf[91]98.3-4.9DØ II Z rap. [64]1016.7-0.6-0.6-0.6-0.6-0.6-0.6			10.0	20.0				
NuTeV $vN \rightarrow \mu\mu X$ [113]8455.3-3.1DØ W asym. [77]148.8-3.3CHORUS $vN F_2$ [125]4232.9+2.7ATLAS 8 TeV $Z p_T$ [87]104106.3-82.2CHORUS $vN xF_3$ [125]2819.5+1.0CMS 8 TeV jets [85]174271.9+10.6HERA e^+p CC [126]3951.6-0.4ATLAS 8 TeV sing. diff. $t\bar{t}$ [110]2525.0-0.7HERA e^-p CC [126]4266.3-3.8-3.8ATLAS 8 TeV sing. diff. $t\bar{t}$ 52.2-1.2HERA e^-p NC 460 GeV [126]209247.1-1.2-1.2dilep. [111]4863.8+6.6HERA e^-p NC 920 GeV [126]402476.2-36.5ATLAS 8 TeV High-mass DY [78]4863.8+6.6HERA e^-p NC 920 GeV [126]159243.4-1.0CMS 8 TeV double diff. $t\bar{t}$ [112]1523.8+1.3CDF II $p\bar{p}$ incl. jets [82]7668.7+8.3ATLAS 8 TeV W [79]2254.8-2.6DØ II Z rap. [63]2839.6+2.5CMS 8 TeV sing. diff. $t\bar{t}$ [91]98.3-4.9DO II W $w \rightarrow ww$ seem [64]1016.7-0.6CMS 8 TeV sing. diff. $t\bar{t}$ [91]98.3-4.9		86	69.0	+1.3	CMS 7 TeV jets [81]	158	189.9	+14.1
CHORUS $vN F_2$ [125]4232.9+2.7ATLAS 8 TeV $Z p_T$ [87]104106.3-82.2CHORUS $vN xF_3$ [125]2819.5+1.0CMS 8 TeV jets [85]174271.9+10.6HERA $e^+ p$ CC [126]3951.6-0.4ATLAS 8 TeV sing. diff. $t\bar{t}$ [110]2525.0-0.7HERA $e^- p$ CC [126]4266.3-3.8ATLAS 8 TeV sing. diff. $t\bar{t}$ 52.2-1.2HERA $e^- p$ NC 820 GeV [126]209247.1-1.2ATLAS 8 TeV sing. diff. $t\bar{t}$ 52.2-1.2HERA $e^- p$ NC 920 GeV [126]209247.1-1.2ATLAS 8 TeV ligh-mass DY [78]4863.8+6.6HERA $e^- p$ NC 575 GeV [126]259247.9-15.1ATLAS 8 TeV W + jets [89]3019.2+1.1HERA $e^- p$ NC 920 GeV [126]159243.4-1.0CMS 8 TeV double diff. $t\bar{t}$ [112]1523.8+1.3CDF II $p\bar{p}$ incl. jets [82]7668.7+8.3ATLAS 8 TeV W [79]2254.8-2.6DØ II Z rap. [62]2830.6+2.5CMS 8 TeV sing. diff. $t\bar{t}$ [91]98.3-4.9DØ II W w W W [64]1016.7-0.6CMS 8 TeV sing. diff. $t\bar{t}$ [91]98.3-4.9		84			DØ W asym. [77]	14	8.8	-3.3
HERA $e^+ p$ CC [126]3951.6 -0.4 ATLAS 8 TeV sing. diff. $t\bar{t}$ [110]2525.0 -0.7 HERA $e^- p$ NC 820 GeV [126]4266.3 -3.8 ATLAS 8 TeV sing. diff. $t\bar{t}$ 52.2 -1.2 HERA $e^- p$ NC 820 GeV [126]209247.1 -1.2 ATLAS 8 TeV sing. diff. $t\bar{t}$ 52.2 -1.2 HERA $e^- p$ NC 920 GeV [126]209247.1 -1.2 ATLAS 8 TeV High-mass DY [78]4863.8 $+6.6$ HERA $e^- p$ NC 920 GeV [126]259247.9 -15.1 ATLAS 8 TeV High-mass DY [78]4863.8 $+1.1$ HERA $e^- p$ NC 920 GeV [126]159243.4 -1.0 CMS 8 TeV double diff. $t\bar{t}$ [112]1523.8 $+1.3$ CDF II $p\bar{p}$ incl. jets [82]7668.7 $+8.3$ ATLAS 8 TeV W [79]2254.8 -2.6 DØ II Z rap. [62]2816.8 $+0.5$ CMS 2.76 TeV jet [86]81113.7 $+10.8$ CDF II Z rap. [63]2839.6 $+2.5$ CMS 8 TeV sing. diff. $t\bar{t}$ [91]98.3 -4.9	,,	42	32.9	+2.7	ATLAS 8 TeV Z p_T [87]	104	106.3	-82.2
HERA e^{-p} CC [126]4266.3 -3.8 ATLAS & TeV sing. diff. $t\bar{t}$ 125126136HERA e^+p NC 820 GeV [126]7584.0 -5.8 ATLAS & TeV sing. diff. $t\bar{t}$ 52.2 -1.2 HERA e^-p NC 460 GeV [126]209247.1 -1.2 $dilep. [11]$ ATLAS & TeV sing. diff. $t\bar{t}$ 52.2 -1.2 HERA e^-p NC 920 GeV [126]402476.2 -36.5 $ATLAS & TeV High-mass DY [78]4863.8+6.6HERA e^-p NC 575 GeV [126]259247.9-15.1ATLAS & TeV W + jets [89]3019.2+1.1HERA e^-p NC 920 GeV [126]159243.4-1.0CMS & TeV double diff. t\bar{t}112]1523.8+1.3CDF II p\bar{p} incl. jets [82]7668.7+8.3ATLAS & TeV W [79]2254.8-2.6DØ II Z rap. [62]2816.8+0.5CMS 2.76 TeV jet [86]81113.7+10.8CDF II Z rap. [63]2839.6+2.5CMS 8 TeV sing. diff. t\bar{t}91]98.3-4.9$	CHORUS $\nu N x F_3$ [125]	28	19.5	+1.0	CMS 8 TeV jets [85]	174	271.9	+10.6
HERA e^-p CC [126]4266.3 -3.8 HERA e^+p NC 820 GeV [126]7584.0 -5.8 HERA e^-p NC 460 GeV [126]209247.1 -1.2 HERA e^-p NC 920 GeV [126]402476.2 -36.5 HERA e^-p NC 575 GeV [126]259247.9 -15.1 HERA e^-p NC 920 GeV [126]159243.4 -1.0 CDF II $p\bar{p}$ incl. jets [82]7668.7 $+8.3$ CDF II $p\bar{p}$ incl. jets [82]7668.7 $+8.3$ CDF II Z rap. [62]2816.8 $+0.5$ CDF II Z rap. [63]2839.6 $+2.5$ CMS 8 TeV sing. diff. $t\bar{t}$ [91]98.3PO(11 W) \rightarrow tw asym1016.7PO(11 W) \rightarrow tw asym1016.7		39	51.6	-0.4	ATLAS 8 TeV sing. diff. tt [110]	25	25.0	-0.7
HERA e^+p NC 820 GeV [126]7584.0-5.8dilep. [111]HERA e^-p NC 460 GeV [126]209247.1-1.2ATLAS 8 TeV High-mass DY [78]4863.8+6.6HERA e^+p NC 920 GeV [126]402476.2-36.5ATLAS 8 TeV High-mass DY [78]4863.8+6.6HERA e^-p NC 575 GeV [126]259247.9-15.1ATLAS 8 TeV W + jets [89]3019.2+1.1HERA e^-p NC 920 GeV [126]159243.4-1.0CMS 8 TeV double diff. $t\bar{t}$ [112]1523.8+1.3CDF II $p\bar{p}$ incl. jets [82]7668.7+8.3ATLAS 8 TeV W [79]2254.8-2.6DØ II Z rap. [62]2816.8+0.5CMS 2.76 TeV jet [86]81113.7+10.8CDF II Z rap. [63]2839.6+2.5CMS 8 TeV sing. diff. $t\bar{t}$ [91]98.3-4.9DØ II W \rightarrow W asym1016.7-0.6CMS 8 TeV sing. diff. $t\bar{t}$ [91]98.3-4.9						5	2.2	-1.2
HERA e^{-p} NC 480 GeV [126]209247.1-1.2HERA e^{+p} NC 920 GeV [126]402476.2-36.5HERA e^{-p} NC 575 GeV [126]259247.9-15.1HERA e^{-p} NC 920 GeV [126]159243.4-1.0HERA e^{-p} NC 920 GeV [126]159243.4-1.0CDF II $p\bar{p}$ incl. jets [82]7668.7+8.3CDF II z rap. [62]2816.8+0.5CDF II Z rap. [63]2839.6+2.5DØ II Z rap. [63]2839.6+2.5DØ II W \rightarrow 1W asyme [64]1016.7DØ II W \rightarrow 1W asyme [64]1016.7DØ II W \rightarrow 1W asyme [64]10CMS 8 TeV sing. diff. $t\bar{t}$ [91]98 TeV sing. diff. $t\bar{t}$ [91]98 TeV sing. diff. $t\bar{t}$ [91]								
HERA $e^- p$ NC 920 GeV [126]259247.9-15.1ATLAS 8 TeV W + jets [89]3019.2+1.1HERA $e^- p$ NC 920 GeV [126]159243.4-1.0CMS 8 TeV double diff. $t\bar{t}$ [112]1523.8+1.3CDF II $p\bar{p}$ incl. jets [82]7668.7+8.3ATLAS 8 TeV W [79]2254.8-2.6DØ II Z rap. [62]2816.8+0.5CMS 2.76 TeV jet [86]81113.7+10.8CDF II Z rap. [63]2839.6+2.5CMS 8 TeV sing. diff. $t\bar{t}$ [91]98.3-4.9					I	48	63.8	+6.6
HERA e^-p NC 920 GeV [126]159243.4-1.0CMS 8 TeV double diff. $t\bar{t}$ [112]1523.8+1.3CDF II $p\bar{p}$ incl. jets [82]7668.7+8.3ATLAS 8 TeV W [79]2254.8-2.6DØ II Z rap. [62]2816.8+0.5CMS 2.76 TeV jet [86]81113.7+10.8CDF II Z rap. [63]2839.6+2.5CMS 8 TeV sing. diff. $t\bar{t}$ [91]98.3-4.9DØ II W $\rightarrow tW$ asym1016.7-0.6CMS 8 TeV sing. diff. $t\bar{t}$ [91]98.3-4.9								1
CDF II $p\bar{p}$ incl. jets [82]7668.7+8.3ATLAS 8 TeV W [79]2254.8-2.6DØ II Z rap. [62]2816.8+0.5CMS 2.76 TeV jet [86]81113.7+10.8CDF II Z rap. [63]2839.6+2.5CMS 8 TeV sing. diff. $t\bar{t}$ [91]98.3-4.9DØ II W $\Rightarrow tw asym [64]1016.7-0.6CMS 8 TeV sing. diff. t\bar{t} [91]98.3-4.9$	· · · · · · · · · · · · · · · · · · ·							
DØ II Z rap. [62] 28 16.8 $+0.5$ CMS 2.76 TeV jet [86] 81 113.7 $+10.8$ CDF II Z rap. [63] 28 39.6 $+2.5$ CMS 8 TeV sing. diff. $t\bar{t}$ [91] 9 8.3 -4.9 DØ II W \Rightarrow ww asym 16.7 -0.6 CMS 8 TeV sing. diff. $t\bar{t}$ [91] 9 8.3 -4.9								-
CDF II Z rap. [63] 28 39.6 +2.5 CMS 8 TeV sing. diff. $t\bar{t}$ [91] 9 8.3 -4.9 DØ II W $\rightarrow t''$ asym 10 16.7 -0.6 -0.	· · · · ·							
$DO[W] \rightarrow ww [64]$ 10 167 -06 -06 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5				1				1
	· · · · · · · · · · · · · · · · · · ·					-		
CDF II W asym. [65] 13 20.1 +1.1 ATLAS 8 lev double diff. Z [80] 59 81.5 -4.1					ATLAS 8 TeV double diff. Z [80]	59	81.5	-4.1

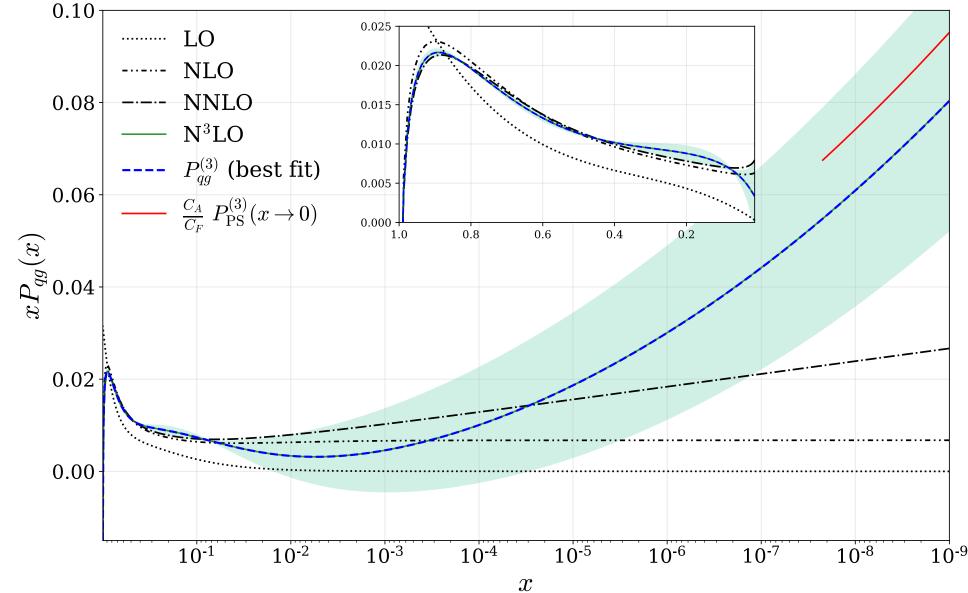
Comparison with/without *K***-factors**

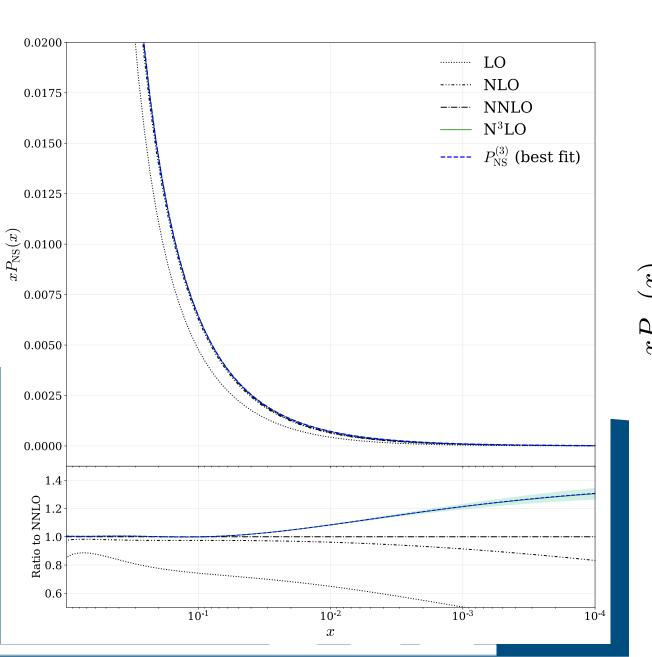
Dimuon Dataset	χ^2	$\Delta \chi^2$	$\Delta \chi^2$ from NNLO
		from NNLO	(NNLO K-factors)
CCFR $\nu N \rightarrow \mu \mu X$ [113]	69.0 / 86	+1.3	+2.6
NuTeV $\nu N \rightarrow \mu \mu X$ [113]	55.3 / 84	-3.1	-3.1
Total	124.3 / 170	-1.8	-0.5

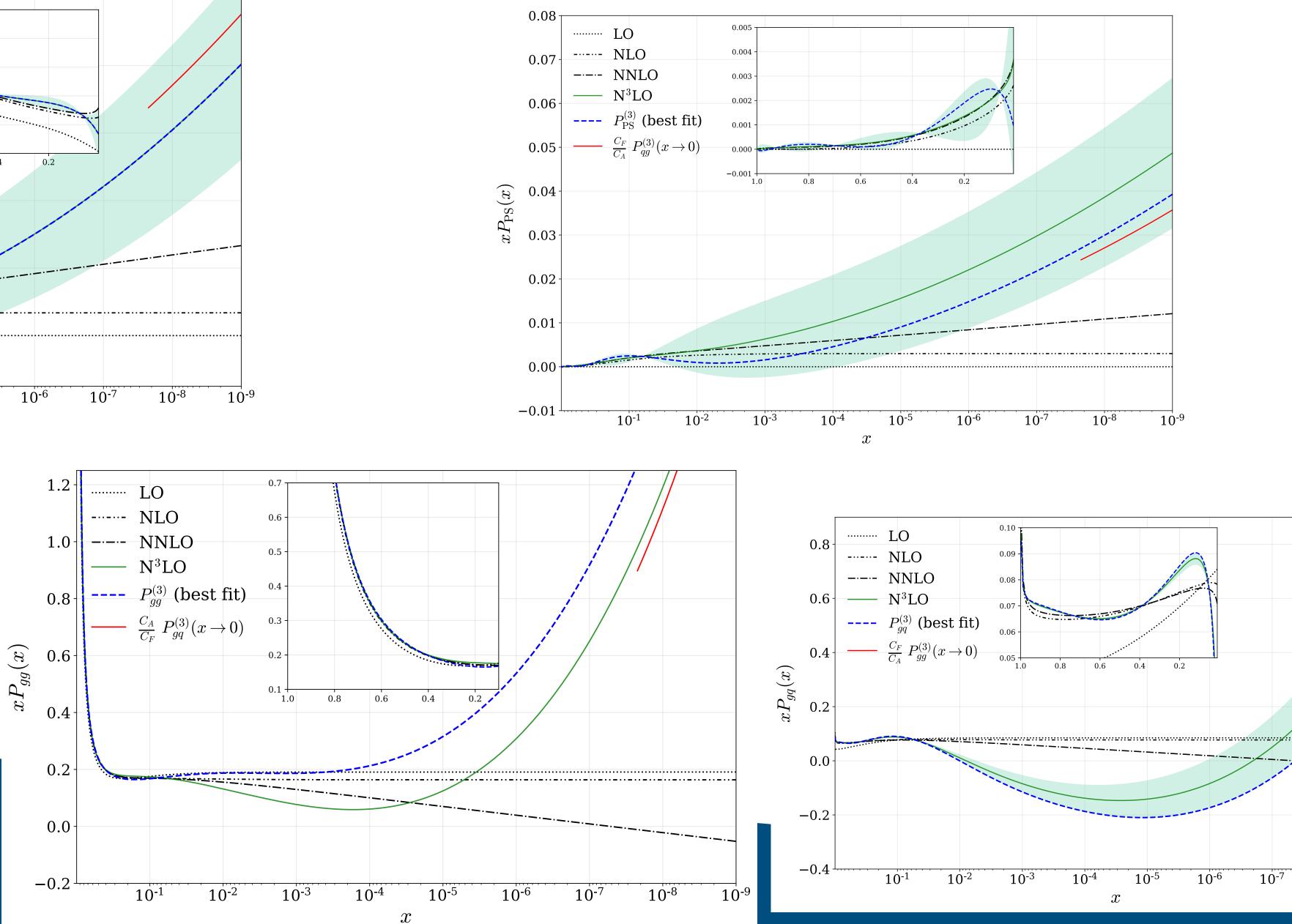
DY Dataset	χ^2	$\Delta \chi^2$	$\Delta \chi^2$ from NNLO
		from NNLO	(NNLO K-factors)
E866 / NuSea pp DY [60]	208.8 / 184	-16.2	-11.6
E866 / NuSea pd/pp DY [61]	7.7 / 15	-2.6	-2.9
DØ II Z rap. [62]	16.8 / 28	+0.5	+0.3
CDF II Z rap. [63]	39.6 / 28	+2.5	+1.3
DØ II $W \rightarrow \nu \mu$ asym. [64]	16.7 / 10	-0.6	-0.5
CDF II W asym. [65]	20.1 / 13	+1.1	+0.8
DØ II $W \rightarrow ve$ asym. [66]	29.0 / 12	-5.0	-5.3
ATLAS W^+ , W^- , Z [67]	29.9 / 30	-0.0	+0.3
CMS W asym. $p_T > 35 \text{ GeV}$ [68]	7.0 / 11	-0.8	-0.6
CMS W asym. $p_T > 25,30$ GeV [69]	7.5 / 24	+0.1	-0.1
LHCb $Z \rightarrow e^+e^-$ [70]	20.6 / 9	-2.1	-1.6
LHCb W asym. $p_T > 20$ GeV [71]	12.9 / 10	+0.4	+1.0
$CMS Z \rightarrow e^+e^-$ [72]	17.3 / 35	-0.6	-0.6
ATLAS High-mass Drell-Yan [73]	18.6 / 13	-0.3	-1.1
CMS double diff. Drell-Yan [74]	136.8 / 132	-7.7	+11.9
LHCb 2015 W, Z [57, 58]	97.1 / 67	-2.3	-2.8
LHCb 8TeV $Z \rightarrow ee$ [75]	26.9 / 17	+0.7	-0.2
CMS 8 TeV W [76]	12.1 / 22	-0.6	+0.2
ATLAS 7 TeV high prec. $W_{J}Z$ [59]	110.4 / 61	-6.2	-18.7
DØ W asym. [77]	8.8 / 14	-3.3	-1.8
ATLAS 8 TeV High-mass DY [78]	63.8 / 48	+6.6	+2.8
ATLAS 8 TeV W [79]	54.8 / 22	-2.6	-1.1
ATLAS 8 TeV double diff. Z [80]	81.5 / 59	-4.1	-1.9
Total	1044.6 / 864	-43.2	-32.1

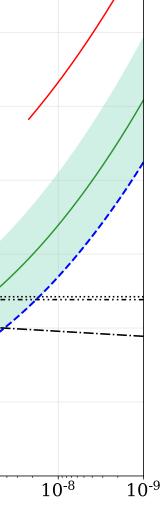
Jets Dataset	χ^2	$\Delta \chi^2$	$\Delta \chi^2$ from NNLO
		from NNLO	(NNLO K-factors)
CDF II $p\bar{p}$ incl. jets [82]	68.7 / 76	+8.3	+0.6
DØ II $p\bar{p}$ incl. jets [83]	113.6 / 110	-6.7	-3.5
ATLAS 7 TeV jets [84]	214.0 / 140	-7.6	+2.4
CMS 7 TeV jets [81]	189.9 / 158	+14.1	+14.5
CMS 8 TeV jets [85]	271.9 / 174	+10.6	+22.9
CMS 2.76 TeV jet [86]	1 13.7 / 8 1	+10.8	+13.5
Total	971.7 / 739	+29.6	+50.3

DIS Dataset	χ^2	$\Delta \chi^2$	$\Delta \chi^2$ from NNLO
		from NNLO	(NNLO K-factors)
BCDMS $\mu p F_2$ [114]	180.7 / 163	+0.5	+0.1
BCDMS $\mu d F_2$ [114]	144.0 / 151	-2.0	-1.1
NMC $\mu p F_2$ [115]	119.2 / 123	-4.9	-7.0
NMC µd F ₂ [115]	106.5 / 123	-6.2	-10.2
SLAC <i>ep F</i> ₂ [116, 117]	32.0 / 37	-0.0	+0.5
SLAC ed F ₂ [116, 117]	21.6 / 38	-1.4	-1.4
E665 µp F ₂ [118]	64.3 / 53	+4.7	+5.7
E665 $\mu d F_2$ [118]	67.1 / 53	+2.4	+2.8
NuTeV $\nu N F_2$ [119]	38.7 / 53	+0.4	+1.7
NuTeV $\nu N x F_3$ [119]	34.3 / 42	+3.6	+1.9
NMC μn/μp [120]	128.4 / 148	-2.4	-2.6
HERA $ep F_2^{charm}$ [121]	135.8 / 79	+3.6	+9.1
NMC/BCDMS/SLAC/HERA	45.5 / 57	-23.0	-23.3
F_L [114, 115, 117, 122–124]			
CHORUS $\nu N F_2$ [125]	32.9 / 42	+2.7	+3.0
CHORUS $\nu N x F_3$ [125]	19.5 / 28	+1.0	+1.1
HERA <i>e</i> ⁺ <i>p</i> CC [126]	51.6 / 39	-0.4	+0.3
HERA e^-p CC [126]	66.3 / 42	-3.8	-3.0
HERA e ⁺ p NC 820 GeV [126]	84.0 / 75	-5.8	-5.5
HERA <i>e⁻p</i> NC 460 GeV [126]	247.1 / 209	-1.2	-0.4
HERA e ⁺ p NC 920 GeV [126]	476.2 / 402	-36.5	-33.3
HERA <i>e⁻p</i> NC 575 GeV [126]	247.9 / 259	-15.1	-14.4
HERA <i>e⁻p</i> NC 920 GeV [126]	243.4 / 159	-1.0	-1.0
Total	2587.0 / 2375	-84.7	-76.8

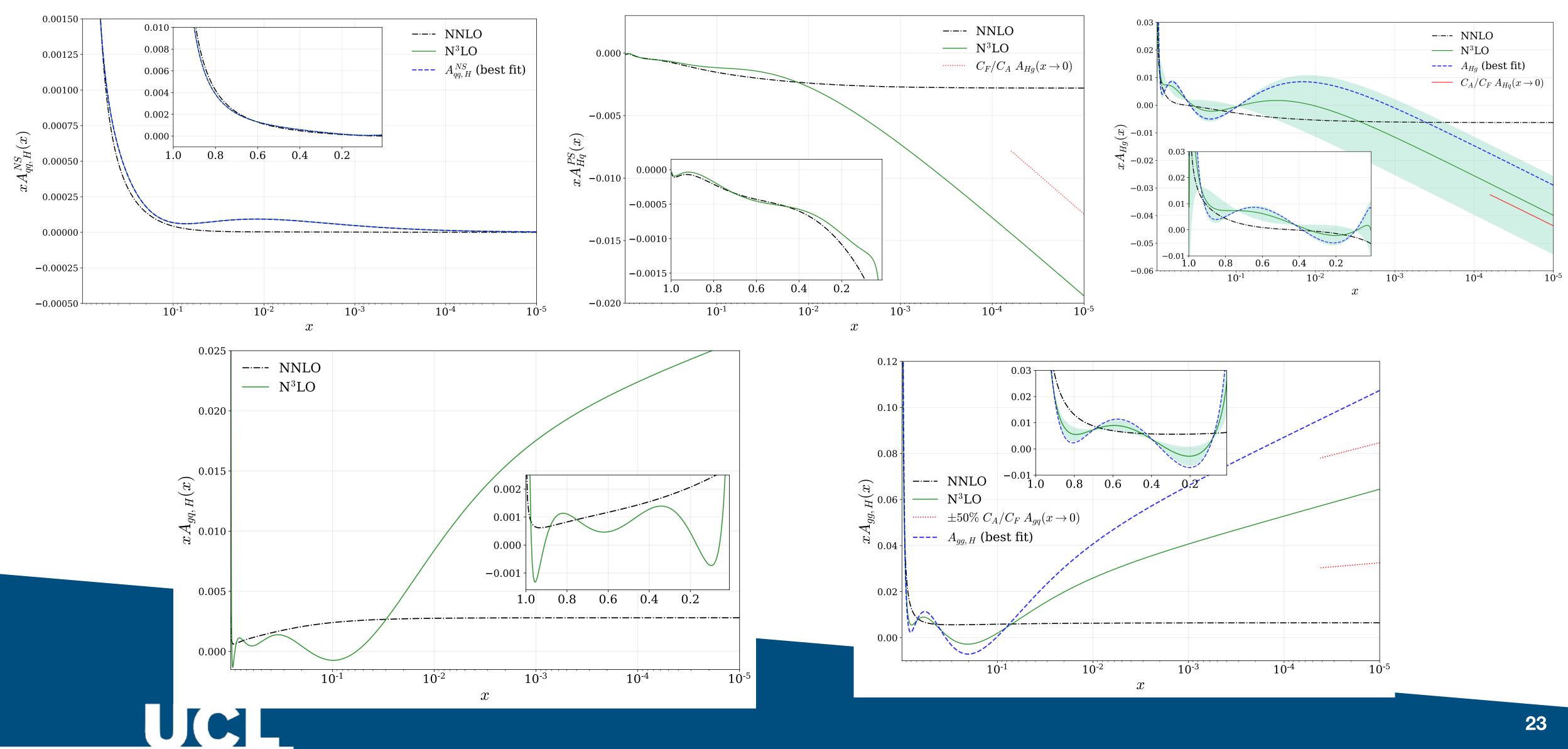

		Top Dataset	χ^2	$\Delta \chi^2$	$\Delta \chi^2$ from NNL(
		-		from NNLO	(NNLO K-factor
	Tevatro	Tevatron, ATLAS, CMS $\sigma_{t\bar{t}}$ [97–109]		-0.5	-0.7
	ATLA	S 8 TeV single diff. <i>t</i> [110]	25.0 / 25	-0.7	-0.0
	ATLAS 8	TeV single diff. <i>tt</i> dilep. [1]	11] 2.2 / 5	-1.2	-0.7
	CMS	8 TeV double diff. $t\bar{t}$ [112]	23.8 / 15	+1.3	+4.9
	CM5	58 TeV single diff. <i>t</i> \overline{t} [91]	8.3 / 9	-4.9	-5.4
		Total	73.3 / 71	-6.0	-2.0
ata Datasat	2	A ² A ² C			
ets Dataset	x-	$\Delta \chi^2 = \Delta \chi^2 \text{ fr}$	om NNLO		

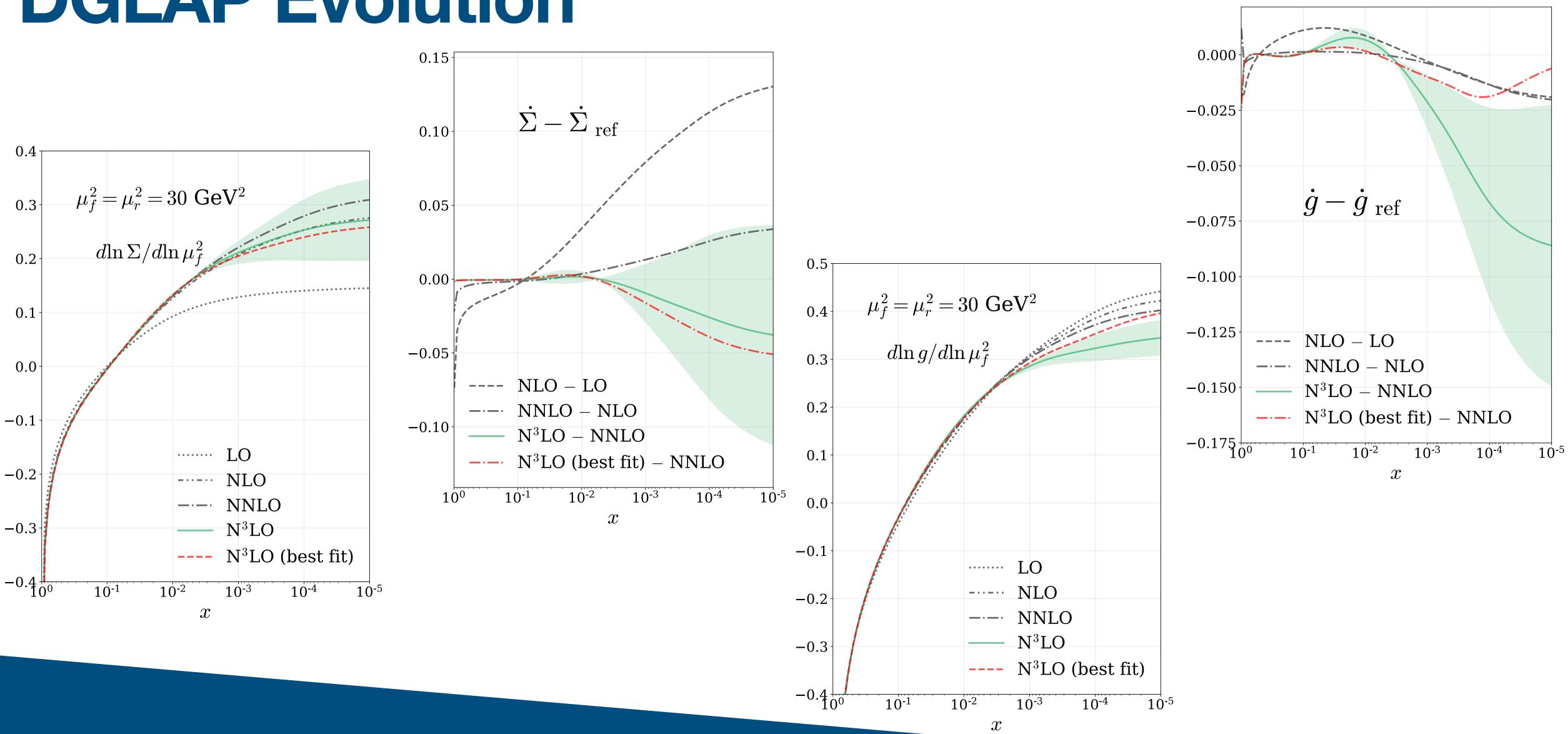

p_T Jets Dataset	χ^2	$\Delta \chi^2$	$\Delta \chi^2$ from NNLO	
		from NNLO	(NNLO K-factors)	
IS 7 TeV W + c [88]	12.2 / 10	+3.6	+1.3	
.AS 8 TeV Z p _T [87]	106.3 / 104	-82.2	-52.5	
S 8 TeV W + jets [89]	19.2 / 30	+1.1	+0.4	
Total	137.7 / 144	-77.5	-50.9	





Approximate N³LO Splitting Functions



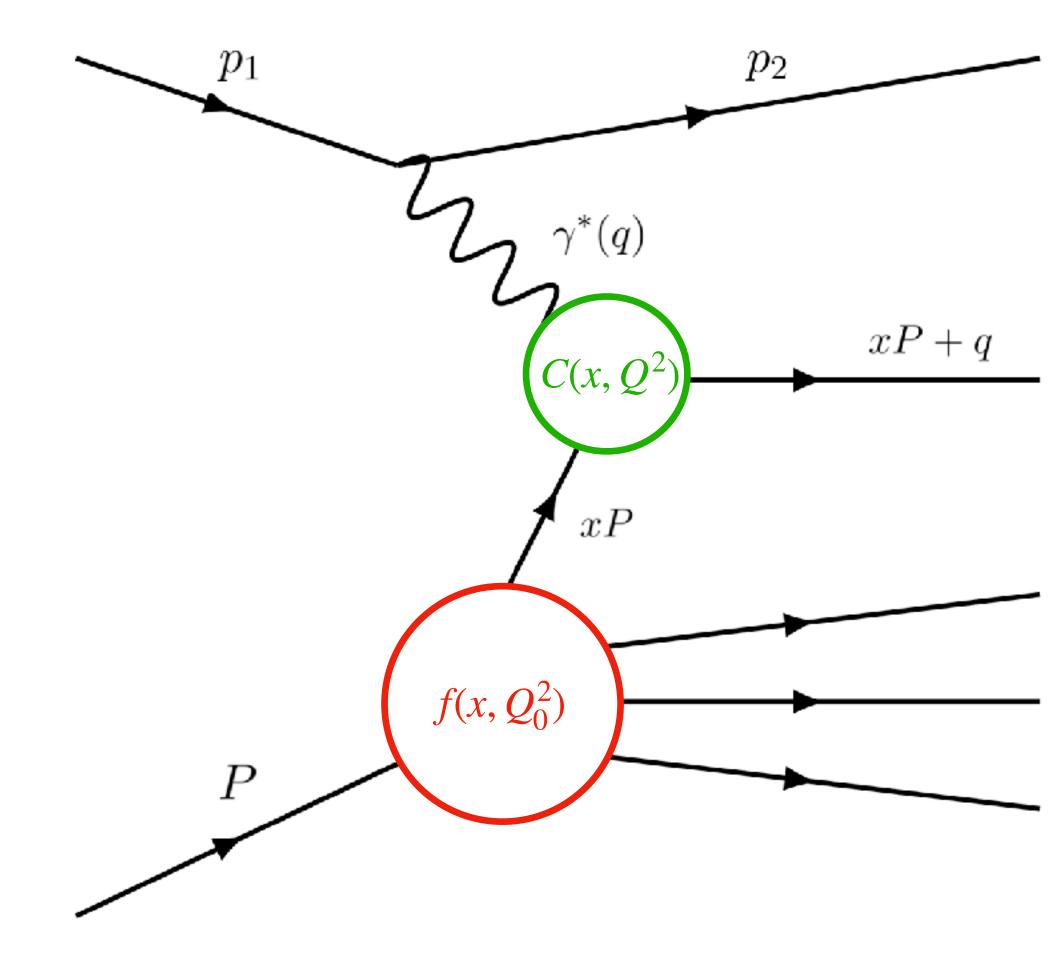


Approximate N³LO Transition Matrix Elements

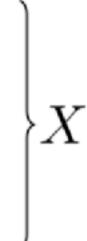
DGLAP Evolution

Usage of aN³LO PDFs

- For DIS processes, using the standard PDF set is advised.
- For any of the other 5 processes included in the fit (which we fit K-factors for), we provide the full details of these fitted aN³LO K-factors.
- For processes not included in the fit, this will be a little more involved.
 - Full details and instructions are provided in J. McGowan et. al., (2022) 2207.04739
 - Feel free to contact us with questions about usage.

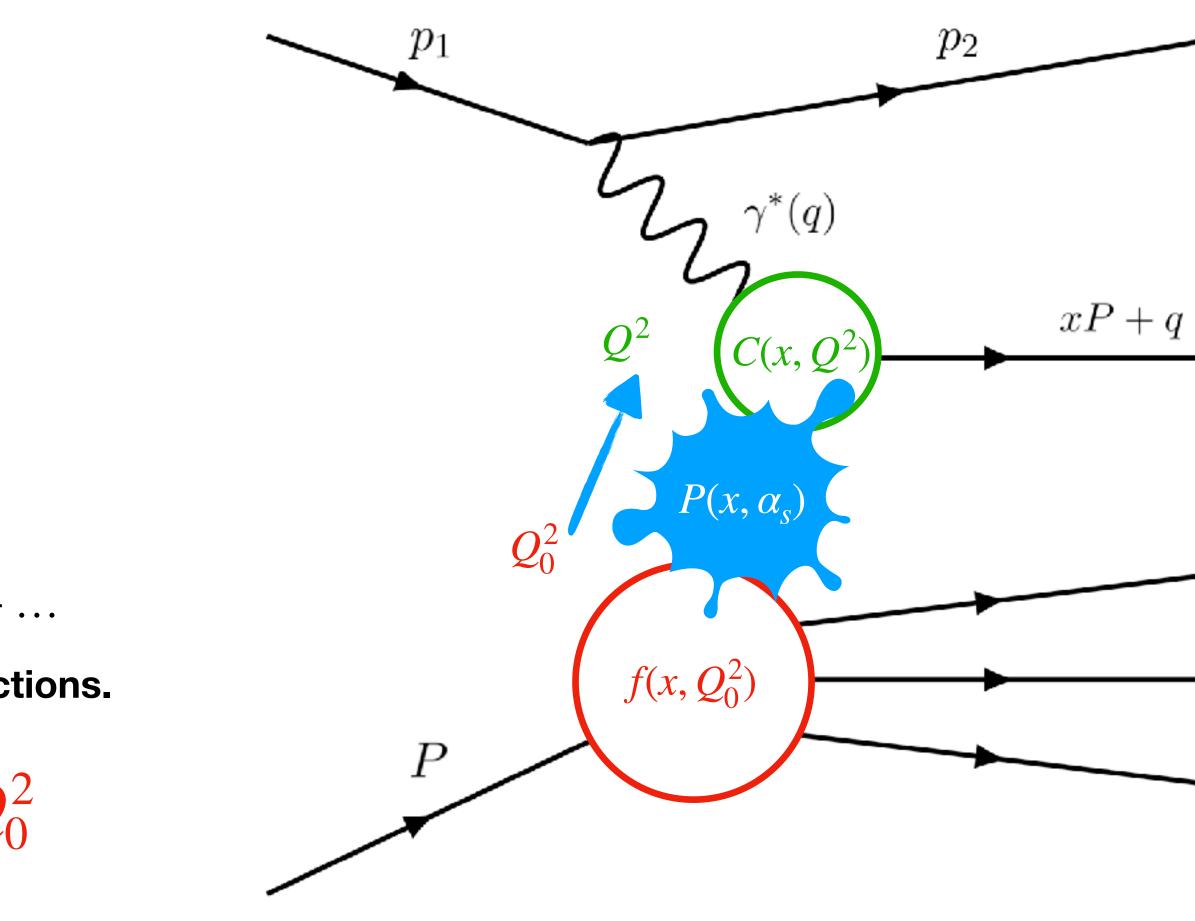

Deep Inelastic Scattering

- PDFs probability of a parton fluctuating out of proton.
- Coefficient function perturbatively calculated.

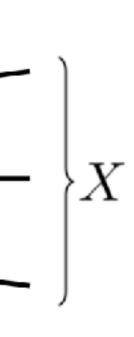

 $C(x,Q^2) = C^{(0)}(x,Q^2) + \alpha_s C^{(1)}(x,Q^2) + \alpha_s^2 C^{(2)}(x,Q^2) + \alpha_s^3 C^{(3)}(x,Q^2) + \dots$

 PDFs are determined from experiment using complex parameterisations.

• 'Global' fit using many different data sets and processes.


Deep Inelastic Scattering

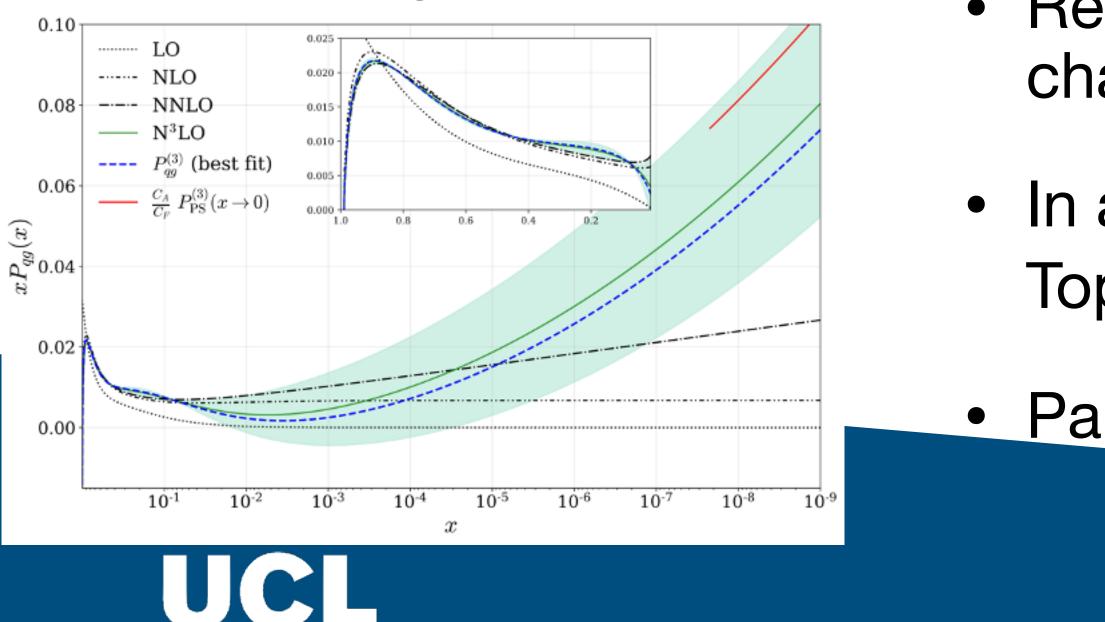
• Scale dependence of PDFs is also calculable in QCD perturbation theory!

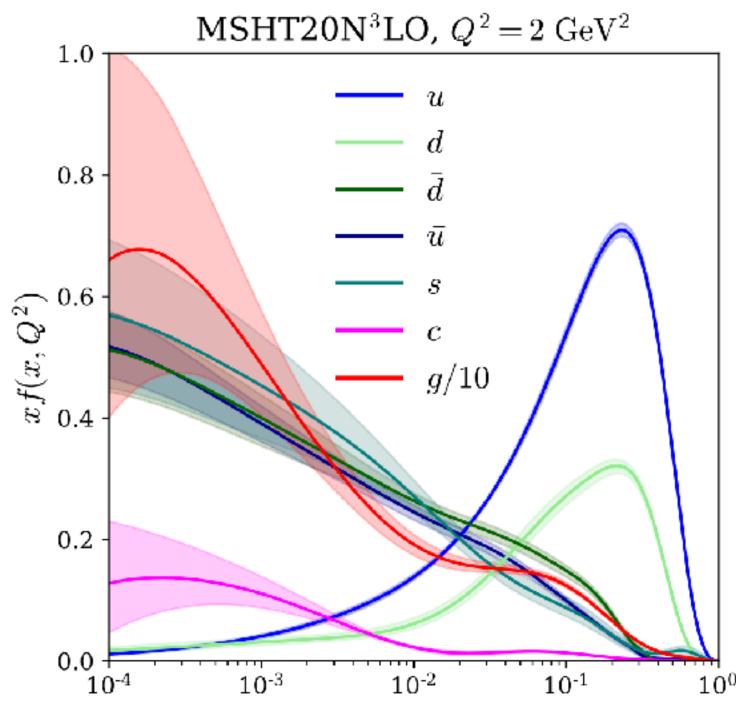

$$\mu^2 \frac{d}{d\mu^2} f(x,\mu^2) = P(x,\alpha_s(\mu^2)) \otimes f(x,\mu^2)$$

$$P(x,\alpha_s) = \alpha_s P^{(0)}(x) + \alpha_s^2 P^{(1)}(x) + \alpha_s^3 P^{(2)}(x) + \alpha_s^4 P^{(3)}(x) +$$
where $P(x,\alpha_s)$ are the splitting functions

• PDFs parameterised at a starting scale Q_0^2 and **evolved** to a desired scale Q^2 .

Takeaway: Perturbatively calculable quantities are essential ingredients for PDF determination (and making predictions using PDFs).





MSHT Approximate N³LO PDFs

- MHOUs are leading source of theoretical uncertainty.
- Parameterisation of N³LO F_2 structure function (incl. N³LO splitting functions) and N³LO K-factors for a consistent aN³LO fit.
- Overall better fit to data reduced tensions between small and large-*x*.

- Results show a harder gluon \rightarrow enhanced charm.
- In agreement with recent N³LO results DY and Top process *K*-factors. arXiv: 2107.09085, 2203.03698
- Paper and PDF sets available (very) soon.

