

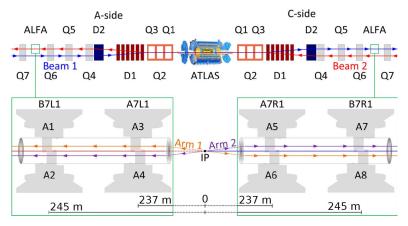
Forward Proton Measurements with ATLAS

Mustafa Schmidt on behalf of the ATLAS collaboration

Bergische Universität Wuppertal

July 30, 2022

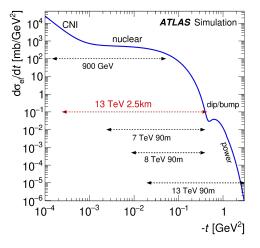
Mustafa Schmidt


Forward Proton Measurements with ATLAS

Bundesministerium für Bildung und Forschung

ALFA Detector

- 4 Roman Pot (RP) stations 237 m & 245 m from IP (A- & C-side) for measuring elastic *pp*-scattering
- Objective: total cross-section & various physics parameters
- High β^{\star} runs (small scattering angles): $\beta^{\star} = 2.5 \, \mathrm{km} \, \mathbb{Q} 13 \, \mathrm{TeV}$

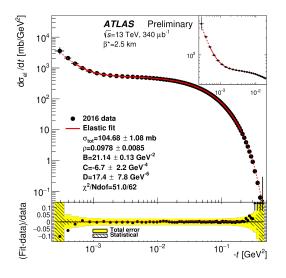

Physics Motivation

• Accessing unprecedented low values of *t*:

$$t pprox (p heta)^2$$

- Sensitive to Coulomb-nuclear interference region
- Important for probing ρ-parameter:

$$\rho = \frac{\mathrm{Re}f(0)}{\mathrm{Im}f(0)}$$

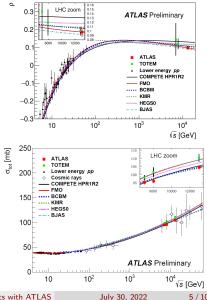

• Unique & important probes of non-perturbative QCD

Methadology: Rafal's talk on Tuesday & my poster

Mustafa Schmidt

Forward Proton Measurements with ATLAS

Analysis Results


- Red line: fit to elastic data points
- σ_{tot}: total elastic cross-section:

$$\sigma_{\text{tot}}^2 = \left. \frac{16\pi}{1+\varrho^2} \cdot \frac{\mathrm{d}\sigma_{\text{el}}}{\mathrm{d}t} \right|_{t\to 0}$$

- ρ: Real-to-imaginary ratio
- *B*, *C*, *D*: nuclear slope parameters
- Remarkable precision:
 - ρ with 1%
 - $\sigma_{\rm tot}$ with 11%

Interpretation

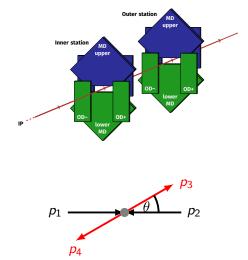
- ATLAS & TOTEM: Canonical evolution model COMPETE clearly disfavoured (predicted $\rho \approx 0.13$)
- Difference in σ_{tot} about 2.2 σ between ALEA and TOTEM
- Similar trend observed in 7 & 8 TeV measurements
- Model including odderon (3-gluon) state) tuned to TOTEM data \Rightarrow not in good agreement with ALFA σ_{tot}
- Conclusion: BCBM damped amplitude model (alternative to odderon) best agreement with data

Forward Proton Measurements with ATLAS

Thank you very much!

Backup Slides

Elastic Scattering

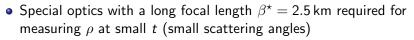

- Elastic *pp* scattering kinematics: *p*1 & *p*2 incoming momenta *p*3 & *p*4 outgoing momenta
- Simple kinematics to calculate momentum transfer *t*:

$$t = (p_1 - p_3)^2 = -4p^2 \sin^2 \frac{\theta}{2}$$

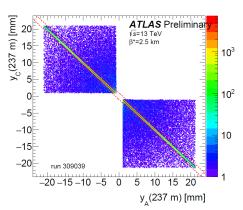
 Approximation of t: product of momentum & scattering:

$$t \approx -(p\theta)^2$$

 scattering angles obtained from hit position ⇒ t-spectrum



Reconstruction Method


• **Subtraction Method** for reconstructing *θ*:

$$\theta^* = \frac{\{x, y\}_A - \{x, y\}_C}{M_{12,A} + M_{12,C}}$$

- Full analysis contains steps:
 - Selection of elastic events
 - Background subtraction
 - Acceptance & unfolding corrections
 - Normalization by luminosity

• Total cross-section $\sigma_{tot} = \sigma_{inel} + \sigma_{el}$

Results

• Fit functions from theoretical model:

$$\begin{aligned} \frac{\mathrm{d}\sigma_{\mathrm{el}}}{\mathrm{d}t} &= \frac{1}{16\pi} \left| f_{N}(t) + f_{C}(t) e^{i\alpha\phi(t)} \right|^{2} \\ f_{C}(t) &= -8\pi\alpha\hbar c \frac{G^{2}(t)}{|t|} \\ f_{N}(t) &= (\varrho+i) \frac{\sigma_{\mathrm{tot}}}{\hbar c} e^{\frac{-B|t| - Ct^{2} - D|t|^{3}}{2}} \end{aligned}$$

- f_N : nuclear amplitude
- f_C : Coulomb amplitude

Results for physics parameters

	$\sigma_{\rm tot}[{\rm mb}]$	ρ	$B[GeV^{-2}]$	$C[GeV^{-4}]$	$D[GeV^{-6}]$
Central value	104.68	0.0978	21.14	-6.7	17.4
Statistical error	0.22	0.0043	0.07	1.1	3.8
Experimental error	1.06	0.0073	0.11	1.9	6.8
Theoretical error	0.12	0.0064	0.01	0.04	0.15
Total error	1.09	0.0106	0.13	2.3	7.8