Intermittency Analysis of charged particles generated in Xe-Xe collisions at $\sqrt{s}_{NN} = 5.44$ TeV using the AMPT Model

Zarina Banoo and Ramni Gupta (speaker)

Department of Physics, University of Jammu Jammu & Kashmir, India

Outline

- Physics Motivation
- Methodology and Observables
- Observations
- Summary

Physics Motivation

- As strongly coupled QGP expands initial state conditions of the collisions transfer into the final-state collective behaviour
- Large density fluctuations (QCD)

Fluctuations in the geometrical configurations (Spatial patterns)

One of the proposed measures

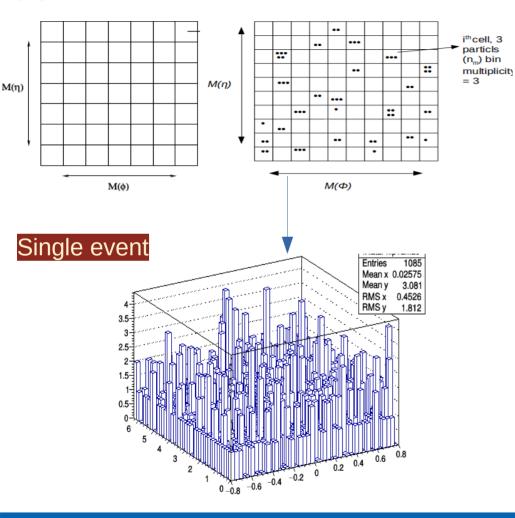
- to characterize QGP
- and hence to add to information about the QCD phase diagram/particle production mechanismm

To study Fluctuations in spatial patterns

To study Fluctuations in spatial patterns

scaling properties of multiplicity fluctuations over wide range of bin sizes using

Normalized Factorial Moments (NFM)


Intermittency analysis

Primary Sources:

- R.C. Hwa and C. B. Yang, Acta Physica Polonica B . Vol. 48 Issue 1 (2017).
- R.C. Hwa & C.B. Yang, PRC 85, 044914 (2012), nucl-ex:1411.6083
- R.C. Hwa and M.T. Nazirov, Phys. Lett. 69, 741 (1992).

Methodology & Observables

Eta-phi phase space of an event is binned into M×M bins

Phase space (η, Φ) is divided into a square lattice

- M(η) and M(Φ) : Number of bins along eta and phi axis respectively.
- Charged particles are mapped into this 2D matrix
- Number of particles that go in each cell defines the bin multiplicity (n_{ie})

$$f_q(n_{ie}) = n_{ie}(n_{ie}-1)(n_{ie}-2)....(n_{ie}-q+1)$$

- *q* is the order of the moment (positive integer)
 q ≥ 2
- n_{ie} is bin multiplicity, $n_{ie} \ge q$, *M* is number of bins.

Observables

Normalized factorial Moments

$$F_{q}(M) = \frac{\frac{1}{N} \sum_{e=1}^{N} \frac{1}{M} \sum_{i=1}^{M} f_{q}(n_{ie})}{\left(\frac{1}{N} \sum_{e=1}^{N} \frac{1}{M} \sum_{i=1}^{M} f_{1}(n_{ie})\right)^{q}}$$

where M is number of bins, N is the number of events

M-Scaling
$$\longrightarrow F_q(M) \propto M^{\varphi_q}$$

- → φ_q is the intermittency index and can be acquired as a quantity characterizing fractality
- F_{a} filters out statistical fluctuations
- Robust against the uniform efficiency losses
- A. Bialas and R. Peschanski, Nucl. Phys. B, 273 (1986).R.C. Hwa and C. B. Yang, Acta Physica Polonica B . Vol. 48 Issue 1 (2017).

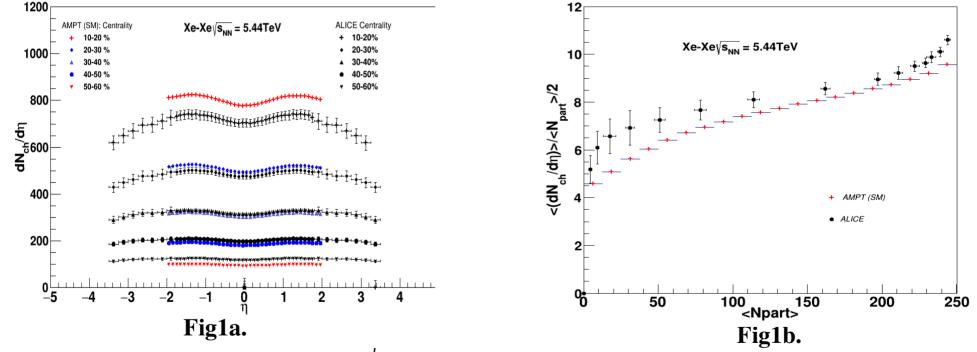
Other than M-scaling, there exist another scaling which is

$$F_q(M) \propto F_2(M)^{\beta_q} \longrightarrow F$$
-Scaling

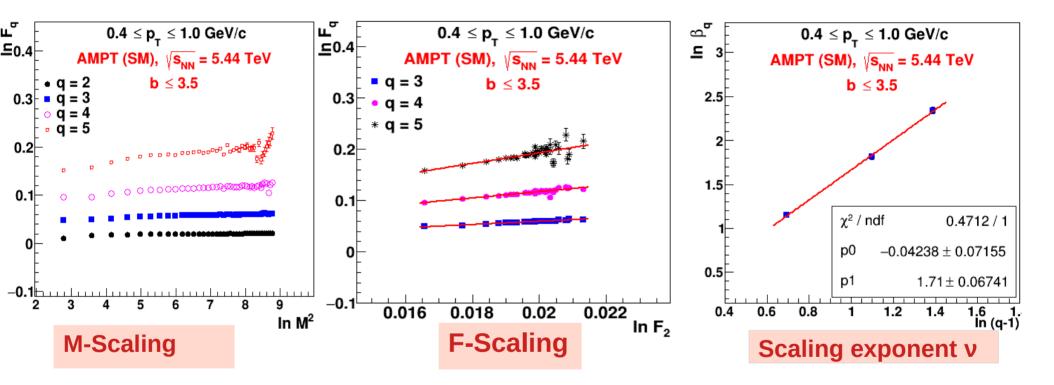
$$\beta_q \propto (q-1)^{\nu}$$

v: is scaling exponent (dimensionless exponent) gives economical summary of the system under studyAim

- Scaling @ LHC energies?
- v @ LHC energies?


2. R.C. Hwa and C.B. Yang, PRC 85, 044914 (2012).

Observations: AMPT


• Is a hybrid transport model and is designed to model the heavy-ion collisions available at

relativistic energies

• AMPT with string melting version

- 500K minimum biased Xe-Xe events at $\sqrt{s_{NN}} = 5.44$ TeV generated, impact parameter $0 \le b \le 3.5$ fm.
- Pseudorapidity density distribution (Fig1a), particle density vs number of participants (Fig1b)

• The M-scaling (left) and F-scaling (middle) behaviour of the NFM (F_q) are studied for p_T bins [0.4-1.0] and the scaling index (right) value are calculated for the same.

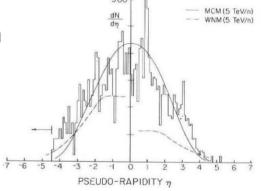
Observations

ALICE Results: Poster Session (today) Pythia+Angantyr: Flash Talk (2-8-22)

Summary

•Scaling properties of the charged particles generated in the mid rapidity region in Xe-Xe collisions at

 $\sqrt{s_{_{NN}}}$ = 5.44 TeV have been studied in the framework of intermittency analysis.

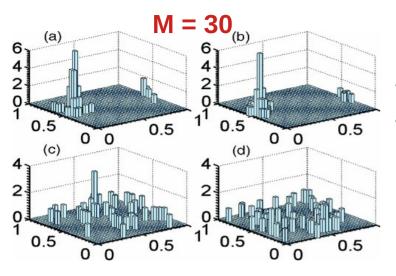

- A power-law growth of NFM (ln F_q) with ln M is observed to be absent at high M values in all the p_T bins.
- However F-scaling is observed.
- With no phase transition physics implemented in (SM) AMPT model
 - Scaling behaviour in line with intermittency is absent.
 - Scaling exponent value (v) is greater than the value predicted by theory for second order phase transition.

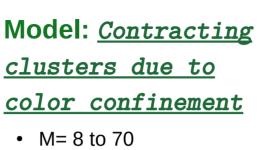
Thanks

Back up

Motivation: Fluctuations and Intermittency

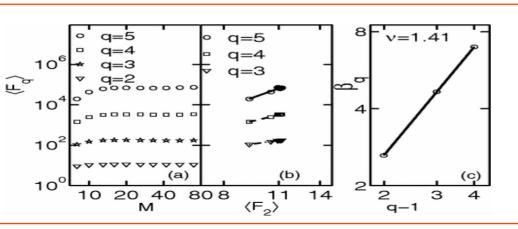
- Large local density fluctuations exist in the process of space-time evolution in high-energy collisions
- To decide whether these fluctuations are dynamical, i.e. larger than expected from Poisson noises,
 - Bialas and Peschanski have suggested the use of normalized factorial moments (NFM)
- These dynamical fluctuations in high-energy collisions can be manifested as an abnormal scaling
 - when the corresponding collision system is a fractral

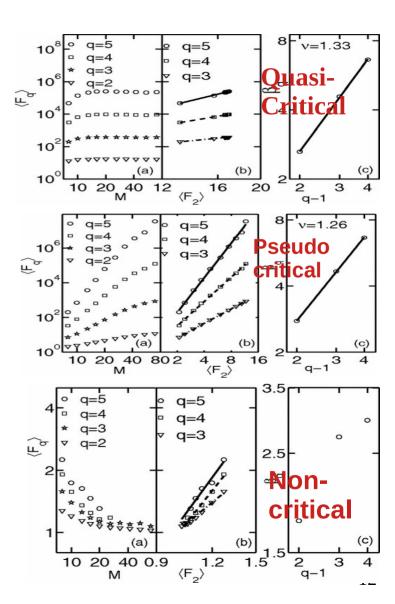

A. Bialas and R. Peschanski, Nucl. Phys. 273, 703 (1986).; 308, 857 (1988)


R. C. Hwa et al, PRL 69, 741 (1992); R. C. Hwa et al, PRC 85, 044914 (2012).

Scaling properties of multiplicity fluctuations over wide range of bin sizes (Intermittency Analysis)

Model Predictions

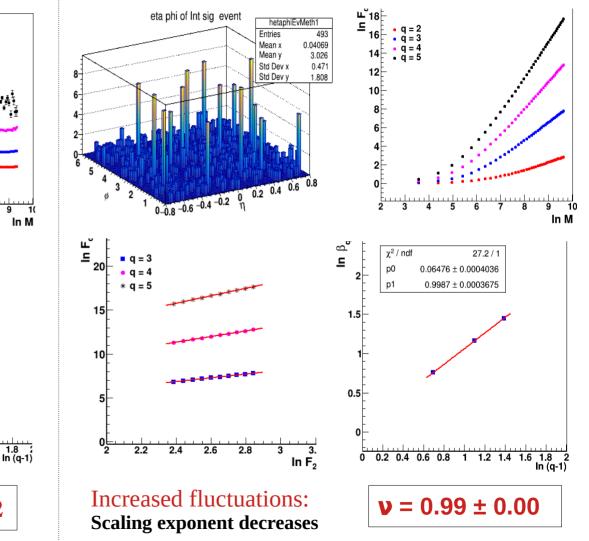

R. C. Hwa et al, PRC 85, 044914 (2012)


- $\Delta p_{T} = 0.04, 0.07, 0.1$ GeV/c around $p_{T} = 1$ GeV/c
- Quar-hadron phase transition

M-Scaling

F-Scaling

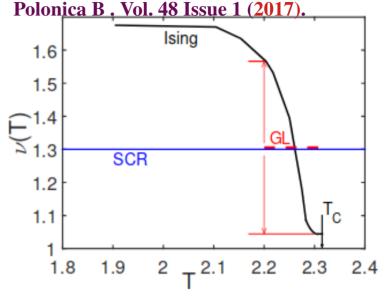
Critical



Toy MC: Baseline value of exponent

Toy MC щ Ц Toy Model eta phi of an event hetaphiEv q = 3 493 Entries 0.01257 $\mathbf{q} = 4$ Mean x 0.08 - • q = 5 Mean y 3.127 Std Dev x 0.4695 Std Dev y 1.884 2.5 0.06 0.04 0.02 n 0 2 0.4 0.6 0-0.8 -0.6 -0.4 -0.2 -0.02 யீ ⊆0.1 Toy Model പ്പ χ^2 / ndf 2.149/1 2 p0 -0.08611 ± 0.01837 q = 3 2.5 q = 4p1 1.565 ± 0.02204 0.08 * q = 5 0.06 1.5 0.04 0.02 0.5 0.2 0.4 0.6 0.8 0.006 1.2 0.0045 0.005 0.0055 In F₂ $v = 1.565 \pm 0.022$ No/least fluctuations

1.8


Toy MC: 1% fluctuations in each events

Scaling exponent (v): Data vs Theory and model predictions

ν	Different Models
1.304	Without kinetic term in GL potential
	GL Formalism: R.C. Hwa, M.T. Nazirov, Phys. Rev. Lett. 69, 741 (1992)
1.316 ± 0.012	With kinetic term in GL potential PLB 297, 35-58 (1992)
1.41	 SCR Model : R. C. Hwa and C. B. Yang, Phys. Rev. C 85, 044914(2012) Ising Model and SCR Model : R. C. Hwa and C. B. Yang, Acta Physica Polonica B 48, (2016)
1.55 ± 0.12	EMU01 and KLM Collaboration EMU01: M.I. Adamovic PRL, 65,412 (1990) KLM: PRL, 62, 733 (1889); PRC 40, 2449 (1989)
1.79±0.10	R. Sharma and R. Gupta, AHEP, Article ID 6283801 (2018)
	(small $p_T bin \sim 0.2$, 0.4 to 0.6 GeV/c, M: 5 to 30) $ \eta < 0.8$, full azimuthal coverage
RHIC energies 1.75 ±0.12 EPOS3 $\nu = 1.743$ from Ur $\nu = 1.94$ from AM	R. Gupta and Salman Khurshid Malik AHEP. Article IDQMD model.S. Bhattacharyya, EPJP 136, 471 (2021).PT model.X. Y. Long et al, NPA 920, 33-34 (2013).
	$ \eta < 0.8$, full azimuthal coverage

R.C. Hwa and C. B. Yang, Acta Physica

The curve v(T) provides a model-dependent interpretation of the value of v in terms of

- temperature T_{c} (=2.315 J/k_B) is the transition temperature in • Ising system
- Dashed red line is the GL value (average of the Ising values between T = 2.2 and T_{o})
- However in real system transition occurs at lower temperature (=2.21 J/k_B) 14