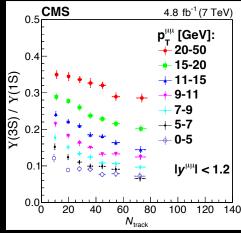
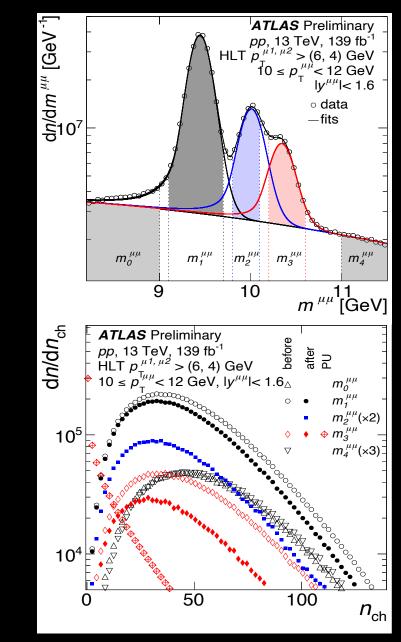
ATLAS measurements of correlations between Υ mesons and inclusive charged particles

lakov Aizenberg on behalf of the ATLAS Collaboration

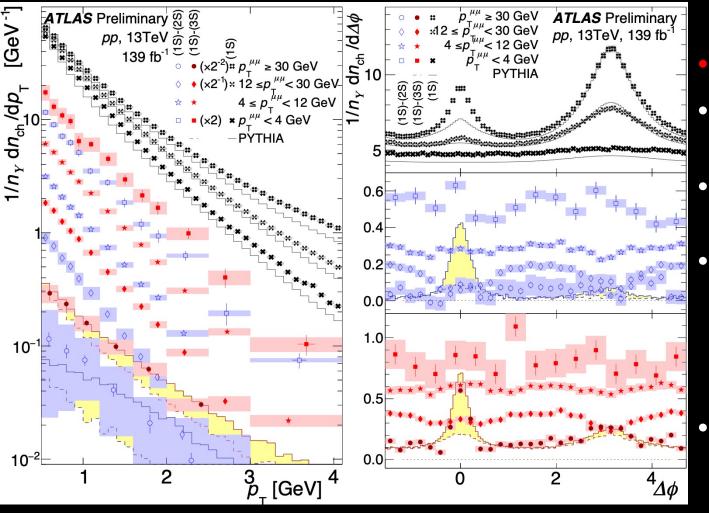


51st International Symposium on Multiparticle Dynamics ISMD 2022

August 1, 2022


Introduction and Motivation

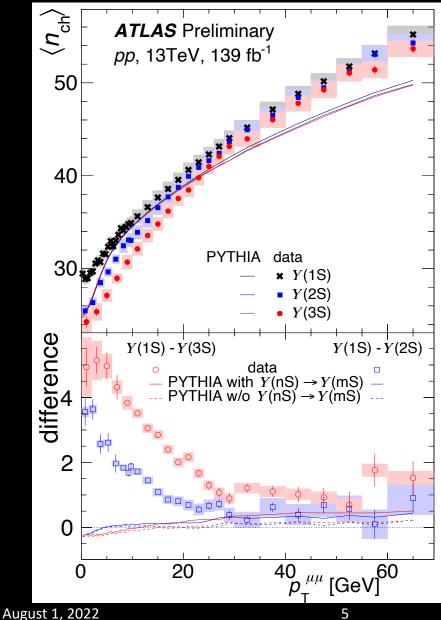
- Many studies of small systems demonstrate QGP-like signatures that belong to soft physics, but there are not many measurements with hard probes. This motivates a search for new phenomenon in *pp* collisions with hard probes.
- In this analysis, we search for modification of the underlying event (UE) for different $\Upsilon(nS)$ states in *pp* collisions by measuring n_{ch} , dn_{ch}/dp_T and $dn_{ch}/d\Delta\phi$, where $\Delta\phi = \phi^{\Upsilon} \phi^h$
- Y states are most sensitive hard probes of QGP formed in A+A system. Y(nS) are rare probes that require high statistics which is available at high pileup.
- CMS observed a decrease of yields Υ(nS) / Υ(1S) ratios as a function of multiplicity and studied the effect in different sphericity intervals (JHEP04 (2014) 103, JHEP11 (2020) 001). CMS concluded that the effect is related to the underlying event (UE).



Analysis

- Full Run-2 13 TeV *pp* collisions data obtained by the ATLAS detector with di-muon triggers.
- $\Upsilon \rightarrow \mu\mu$ events with $|y^{\mu\mu}| < 1.6$.
- Charged hadrons: 0.5 $< p_T < 10$ GeV, $|\eta| < 2.5.$
- Define $\Upsilon(nS)$ and background rates using fits.
- Extract n_{ch} and all kinematic distributions using the side-band subtraction method by defining five $m^{\mu\mu}$ regions.
- Subtract the pileup using the Mixed Event technique (EPJC 80 (2020) 64).
- n_{ch} distributions for Υ states are different.
- $dn_{ch}/dp_T dn_{ch}/d\Delta \phi$ are measured using the same procedure.

Kinematic Distributions of $\Upsilon(1S)$ and $\Upsilon(1S) - \Upsilon(nS)$


- Subtracted p_T distributions are consistent in shape with the UE and not jets.
- Subtracted $\Delta \phi$ distributions resemble UE
- Υ (1S) distribution for $p_T^{\mu\mu}$ < 4 GeV represents the UE.
- The effect is stronger for $\Upsilon(3S)$ than for $\Upsilon(2S)$
- Above 30 GeV, subtracted distributions gets harder, peaks appear around $\Delta \phi = 0$ and $\Delta \phi = \pi$ that can be explained by feed-downs $\Upsilon(nS) \rightarrow \Upsilon(1S)$ (yellow from Pythia).
- Subtracted distributions display some residual non-uniformity in $\Delta \phi$ presumably due to $\chi_b(mP) \rightarrow \Upsilon(nS)$ decays which are not well studied.

Multiplicity dependence on Υ momentum

• Strong difference in the multiplicity of the UE for different $\Upsilon(nS)$ states is observed.

- The effect is strongest at $p_T^{\mu\mu} = 0$ and diminishes with increasing $p_T^{\mu\mu}$, but still visible at 20-30 GeV.
- Feed-down of $\Upsilon(nS)$ states, mass differences, systematic uncertainties cannot explain the effect.
- Pythia does not describe the effect.

• At the lowest $p_T^{\mu\mu}$ $\Upsilon(1S) - \Upsilon(2S) \Delta \langle n_{ch} \rangle = 3.6 \pm 0.4$ 12% of $\begin{pmatrix} n_{ch}^{\Upsilon(1S)} \\ n_{ch}^{\Upsilon(1S)} \\ 17\% \text{ of } \begin{pmatrix} n_{ch}^{\Upsilon(1S)} \\ n_{ch}^{\Upsilon(1S)} \\ n_{ch}^{\Upsilon(1S)} \end{pmatrix}$

Thank you for your attention