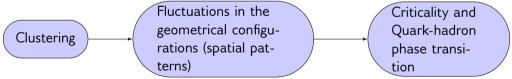
# Intermittency analysis of charged hadrons generated in Pb-Pb collisions at $\sqrt{s_{NN}} = 2.76$ TeV and 5.02 TeV using Pythia8/Angantyr

#### Salman K Malik & Ramni Gupta

University of Jammu, Jammu, India






#### Outline

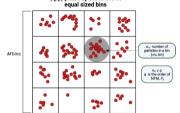
- 1. Motivation
- 2. Formalism
- 3. Pythia8/Angantyr
- 4. Observations
- 5. Summary

#### **Motivation**

- As the system approaches critical temperature, tension between the collective interactions and thermal randomization increases leading to formation of clusters.
- In order to study the resultant scale-invariance in the system, a number of statistical tools are used in heavy-ion collisions.
- Study of fluctuations in the measurable quantities is an important tool to understand the dynamics of the particle production and phase changes.
- Large density fluctuations in the initial stage of collision transfer into final stage collective behaviout as the strongly coupled quark gluon pasma expands.



Scaling and Scaling exponent @ LHC energies?


2

Formalism

Fluctuations are characterized by moments of the particle density distribution within some phase space bins and one of such moments used over a range of bin sizes  $\rightarrow$ **Normalized Factorial Moments**.

• For M number of bins, the  $q^{th}$  order NFM is defied as:

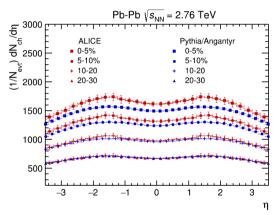
$$F_q(M) = \frac{\frac{1}{N} \sum_{e=1}^{N} \frac{1}{M} \sum_{i=1}^{M} f_q(n_{ie})}{\left(\frac{1}{N} \sum_{e=1}^{N} \frac{1}{M} \sum_{i=1}^{M} f_1(n_{ie})\right)}$$



where,  $\boldsymbol{N} \text{ is the number of events and}$ 

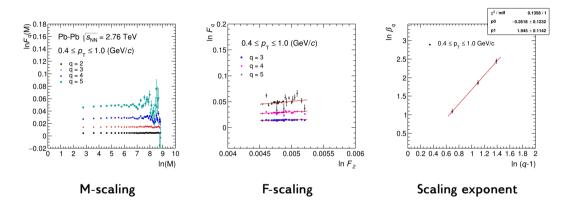
$$f_q(n_{ie}) = \langle n_{ie}(n_{ie} - 1) \dots (n_{ie} - q + 1) \rangle_h$$

 $F_q$  filters out statistical fluctuations. For purely statistical fluctuations,  $F_q = 1$ .


#### Formalism

Intermittency

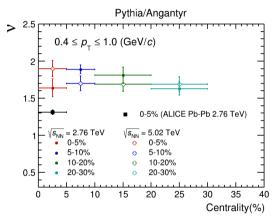
- In case of any scale-invariant pattern, NFMs are expected to scale as:  $F_q \propto M^{\phi_q}.$
- Another dependence:  $F_q \propto F_2(M)^{\beta_q}$ .
- Both the dependencies are different because  $\phi_q$  and  $\beta_q$  depend on different critical parameters.
- $\beta_q$  is independent of the critical paramters of the system below critical temperature.
- Scaling exponent, u:  $\beta_q \propto (q-1)^{
  u}$ .
- Predictions for  $\nu$ :
  - $\triangleright~$  1.32  $_{\mathit{Hwa:1992}} \rightarrow$  in case of Ginzburg-Landau formalism for the second-order PT.
  - $\,\triangleright\,$  1.41  $_{Hwa:2011} \rightarrow$  Critical fluctuations, SCR Model.


### Pythia8/Angantyr

- Extrapolates pp dynamics, to heavy ion collisions.
- Dœsn't assume a hot thermalized medium.
- Motivation is to see differences between the model and experimental results which may show effects of collective behaviour.
- Intermittency observables are already calculated with AMPT *link*, EPOS3*link* and ALICE PbPb 2.76 TeV<sub>QM22poster</sub>.



5


#### **Observations**



- Similar results are seen for 2.76 TeV and 5.02 TeV for all the centralities..
- For narrow width  $p_T$  bins (0.4  $\leq p_T \leq$  0.6, 0.6  $\leq p_T \leq$  0.8, 0.8  $\leq p_T \leq$  1.0), no signal of M-scaling or F-scaling, hence  $\nu$  is not calculated.

#### Summary

- Neither M-scaling nor F-scaling observed in the particle generation particularly narrow  $p_T$  bins.
- Intermittency, hence scale-invariant fluctuations not present.
- The value of  $\nu$  is  $\sim 1.7 1.9, > 1.304$  for wide  $p_T$  bins and independent of centrality.
- Angantyr overestimates the predicted value of scaling exponent,  $\nu$ .



## THANK YOU