
ISMD2022 · Scotland, 1 - 5 August 2022 Measurement of Z boson production in association with high-transverse-momentum jets in pp collisions at 13 TeV using full Run-2 data at ATLAS

<u>arXiv:2202.02597</u> · <u>STDM-2018-49</u>

Introduction

- First ever Z + high-p_T jets measurement using the full Run-2 dataset of $\mathcal{L} = 139 \, \text{fb}^{-1}$. \bullet
- Measurements unfolded to fiducial phase space.
- High- p_T jet and Z phase spaces sensitive to NLO QCD and EW corrections.

have impact of up to -20% for large $p_T(Z)$

Event Selection

- Final state:
 - \rightarrow Z + \geq 1 jet.
 - \rightarrow On-shell Z boson decaying into charged leptons: e^+e^- or $\mu^+\mu^-$.
 - \rightarrow Only jets with $p_{\rm T} \ge 100$ GeV.
- *High-p*_T region defined with: $p_T(j_1) \ge 500$ GeV.
- Use $\Delta R_{Z,iet}^{min} = \sqrt{\Delta y^2 + \Delta \phi^2}$ to study enhanced topologies:

Real EW correction to dijet production enhanced by $\ln^2(\frac{p_T(jet)}{r})$ vs real QCD corrections to Z + 1 jet

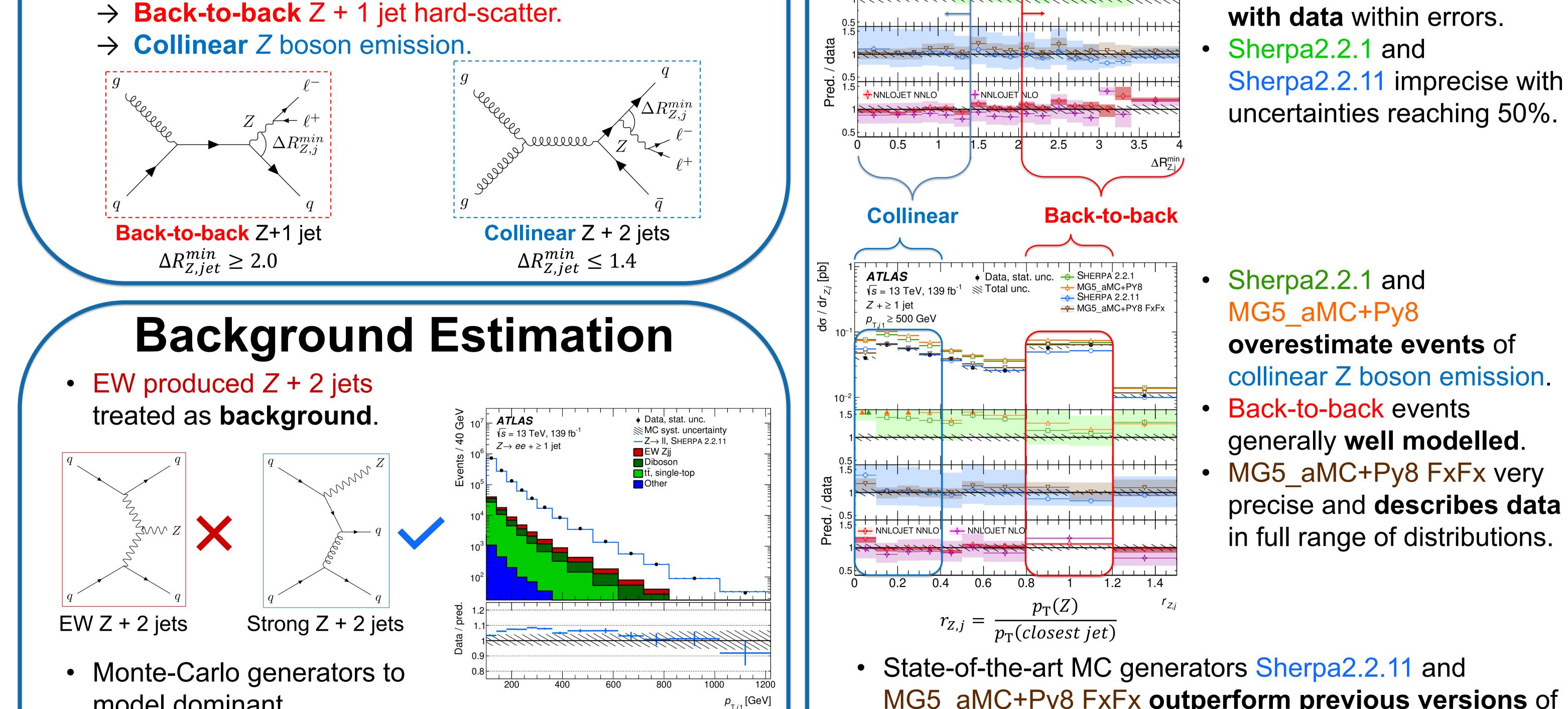
Results

 $\sim\sim$

- Fiducial cross sections compared against theoretical predictions and fixed-order calculations from NNLOjet.
- Only Sherpa2.2.11 includes NLO virtual EW corrections.

[dd] ATLAS ♦ Data, stat.

Model of the state of the stat $\sqrt{s} = 13 \text{ TeV}, 139 \text{ fb}^{-1}$ d∆R $Z + \geq 1$ jet MG5 aMC+PY8 FxFx p_{T.i1}≥ 500 GeV


• Low $\Delta R_{Z,jet}^{min}$ populated by collinear events.

Collinear emission of

on-shell Z boson:

real EW correction

- Back-to-back events in \bullet peak at $\Delta R_{Z,iet}^{min} = \pi$.
- All predictions consistent

- model dominant backgrounds: diboson and EW Z + 2 jets.
- Data-driven method to estimate dominant $t\bar{t}$ background using $e\mu$ control region data.

Dominant backgrounds: $\rightarrow 2\% - 6\% t\bar{t}$

- \rightarrow 2% 5% Diboson \rightarrow 1% - 5% EW Z + 2 jets
- State-of-the-art MC generators Sherpa2.2.11 and MG5 aMC+Py8 FxFx outperform previous versions of Sherpa2.2.1 and leading order MadGraph.
- NNLOjet @ NNLO most precise prediction.
- Collinear emissions have large effect in high- p_T region.
- NLO virtual EW corrections have 10% 20% impact on events with $p_{\rm T}(jet) \ge 500 {\rm GeV}$.
 - QCD scale uncertainties very large: several 10s of %.

Alexandre Laurier · Carleton University · Canada On behalf of the ATLAS collaboration

